Condensed Filter Tree for Cost-Sensitive Multi-Label Classification

Chun-Liang Li and Hsuan-Tien Lin

Department of Computer Science and Information Engineering National Taiwan University

June 22, 2014 (ICML)

Multi-label classification

One instance is associated multiple labels

Given

N examples $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$

- Feature vector $\mathbf{x} \in \mathbb{R}^d$
- Label vector $\mathbf{y} \in \{0,1\}^K$

y =	0	1	1	1
$\mathcal{Y} =$	{Apple	Kiwi	Orange	Strawberry}

Goal

Find a classifier $h: \mathbb{R}^d \to \{0,1\}^K$ which **closely** predicts the label vector **y**

Number of Error Labels

• Hamming Loss
$$\frac{1}{K} \sum_{k=1}^{K} \llbracket \mathbf{y}[k] = \hat{\mathbf{y}}[k] \rrbracket$$

May be meaningless, why? Sparsity!

• Rank Loss
$$\sum_{\mathbf{y}[i] \triangleright \mathbf{y}[j]} \left(\left[\hat{\mathbf{y}}[i] < \hat{\mathbf{y}}[j] \right] + \frac{1}{2} \left[\hat{\mathbf{y}}[i] = \hat{\mathbf{y}}[j] \right] \right)$$

• F1 score
$$\frac{1}{K} \frac{2 \|\mathbf{y} \cap \hat{\mathbf{y}}\|_{1}}{\|\mathbf{y}\|_{1} + \|\hat{\mathbf{y}}\|_{1}}$$

and so on

How to optimize? Can we have a general description?

Cost-Sensitive Multi-Label Classification (CSMLC)

Goal

Minimize average cost given any cost matrix (evaluation criterion).

The Main Focus of this work

C.-L. Li and H.-T Lin (NTU CSIE)

Existing General Framework				
Framework	Additional Efforts			
Probabilistic Classifier Chain	Efficient Inference rule			
Structure SVM	Efficient Maximizer			
	•			

The Proposed Algorithm

- without additional design effort
- superior empirical performance

Preliminary Approach

Cost-Sensitive Multi-Class

- Well-Studied (Beygelzimer et al., 2005, 2007)
- Define cost between classes

Label Powerset

- Multi-Label to Multi-Class
- Transform each {0,1}^K to a unique class
- Ex: {00, 01, 10, 11} \Rightarrow {1,2,3,4}

Simple Idea: Cost-Sensitive Multi-Class + Label Powerset

+

- Reduce multi-label to multi-class via label powerset
- 2 Describe the evaluation criterion by cost matrix
- Apply any cost-sensitive multi-class algorithm

Advantage:Optimize any loss without specific design effortChallenge:#Classifiers, Prediction, Training with $O(2^K)$ classes

Utilize the Tree Structure (Beygelzimer et al., 2007)

Weighted binary classifier

for cost-sensitive multiclass

extended classes

 Predict in log(2^K) = O(K)
Challenge: O(2^K) classifiers for all internal nodes **Properly order** classes (vectors) and **relabel** the internal nodes

K-Classifier Trick

- k-th layer predicts k-th label y[k]
- Let each layer **share** 1 classifier $h_k(node, \mathbf{x})$
- Reduce $O(2^K)$ classifiers to *K* classifiers

Train K classifiers - Filter Tree (Beygelzimer et al., 2007)

Filter Tree

- A cost-sensitive multi-class algorithm
- A bottom-up training (regret is bounded)
- Use all training data to generate binary classification data \mathcal{B} for each nodes

K-Classifier trick

- \mathcal{B}_A for layer 1
- \mathcal{B}_B and \mathcal{B}_C for layer 2
- Layer k should consider 2^{k-1} sets
- Not solve training difficulty

Naive Approach

- Infeasible to consider all nodes
- **Uniformly sample** *M* nodes for training

Condensed Filter Tree

Not every node is important

Intuition

- Ignore the nodes you won't visit
- Focus on what you really meet

A Greedy Manner

- Add the nodes on the prediction path
- Retrain on them to get better classifiers

- Can repeat this process several times
- Theoretical guarantee

C.-L. Li and H.-T Lin (NTU CSIE)

CFT for CSMLC

10 / 14

Experiment I (the higher the better)

Settings

- 80% data for training, 20% for testing, repeat 40 times
- Tune parameters by 5-fold CV, apply to 9 datasets (partially report)

F1 Score $\frac{1}{K} \frac{2 \|\mathbf{y} \cap \hat{\mathbf{y}}\|_1}{\|\mathbf{y}\|_1 + \|\hat{\mathbf{y}}\|_1}$ (the higher the better)

Consider prediction path is useful and CFT has superior performance

Experiment III

- Propose cost-sensitive multi-label classification to **unify different** evaluation criteria for designing a general algorithm
- Utilize the tree structure with K-classifier trick to solve difficulty of prediction and representation
- Select key nodes for training efficiently and effectively with theoretical guarantee
- Better or Competitive performance with specific designed algorithms

Thank you! Questions?