
Condensed Filter Tree for Cost-Sensitive Multi-Label Classification

Chun-Liang Li R01922001@CSIE.NTU.EDU.TW
Hsuan-Tien Lin HTLIN@CSIE.NTU.EDU.TW

Department of Computer Science and Information Engineering, National Taiwan University

Abstract
Different real-world applications of multi-label
classification often demand different evaluation
criteria. We formalize this demand with a gen-
eral setup, cost-sensitive multi-label classifica-
tion (CSMLC), which takes the evaluation crite-
ria into account during learning. Nevertheless,
most existing algorithms can only focus on op-
timizing a few specific evaluation criteria, and
cannot systematically deal with different ones. In
this paper, we propose a novel algorithm, called
condensed filter tree (CFT), for optimizing any
criteria in CSMLC. CFT is derived from reducing
CSMLC to the famous filter tree algorithm for
cost-sensitive multi-class classification via con-
structing the label powerset. We successfully
cope with the difficulty of having exponentially
many extended-classes within the powerset for
representation, training and prediction by care-
fully designing the tree structure and focusing on
the key nodes. Experimental results across many
real-world datasets validate that CFT is compet-
itive with special purpose algorithms on special
criteria and reaches better performance on gen-
eral criteria.

1. Introduction
The multi-label classification problem allows each instance
to be associated with a set of labels simultaneously. It
has in recent years attracted much attention among re-
searchers (Tsoumakas et al., 2010; 2012) because the prob-
lem setting matches many different real-world applications;
these include bio-informatics (Elisseeff & Weston, 2002),
text mining (Srivastava & Zane-Ulman, 2005) and multi-
media (Turnbull et al., 2008). The different applications
often come with different criteria for evaluating the perfor-
mance of multi-label classification algorithms. Popular cri-
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teria include the Hamming loss, the 0/1 loss, the Rank loss,
the F1 score and the Accuracy score (Tsoumakas et al.,
2010).

Currently, most algorithms are designed based on none,
one, or a few specific criteria. For instance, the label-
wise decomposition approaches (Read et al., 2009) aim at
optimizing the Hamming loss by decomposing the multi-
label classification problem into several binary classifica-
tion problems, one for each possible label. The label pow-
erset approach aims at optimizing the 0/1 loss by treating
each distinct label-set as a unique extended class and re-
ducing multi-label classification to multi-class classifica-
tion. The probabilistic classifier chain (PCC) (Dembczyn-
ski et al., 2010) approach estimates the probability of each
possible label-set given an instance and uses the estimate
to make a Bayes-optimal decision for any loss functions,
while the structured SVM approach (Petterson & Caetano,
2010; 2011) uses different convex surrogates for different
evaluation criteria. Somehow both approaches require ei-
ther special inference rules or loss maximizers for different
evaluation criteria.

The variety of evaluation criteria calls for a more general
algorithm that can cope with different criteria systemati-
cally and automatically. We formalize this need with a
general setup, called cost-sensitive multi-label classifica-
tion (CSMLC). CSMLC can be viewed as an extension
of the popular setup of cost-sensitive multi-class classifi-
cation. In CSMLC, we feed the multi-label classification
algorithm with a cost function that quantifies the differ-
ence between a predicted label-set and a desired one. A
general CSMLC algorithm operates on the given cost func-
tion, with the goal being better performance on that cost
function. Compared with the existing methodology that re-
quires specific design for every new application (criterion),
general CSMLC algorithms can be used to save those de-
sign efforts and be easily adopted towards different appli-
cation needs.

In this paper, we propose a novel algorithm for CSMLC,
called the condensed filter tree (CFT). In contrast to PCC,
the proposed CFT directly takes the criterion into account
as the cost function during training, thereby averting the
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need to design a specific inference rule for each new cri-
terion and avoiding the possibly time-consuming inference
step during prediction. Inspired by the rich literature of
cost-sensitive multi-class classification (Domingos, 1999;
Beygelzimer et al., 2008), CFT is derived by first reduc-
ing CSMLC to cost-sensitive multi-class classification via
the label powerset approach. Nevertheless, the reduction
leads to exponentially many extended classes, which makes
training, prediction and model representation computation-
ally challenging.

We conquer the challenge of prediction by exploiting tree-
based models for cost-sensitive multi-class classification.
Tree-based models use a tree structure that is constructed
by binary classifiers to make fast predictions. Then we
achieve time complexity logarithmic with respect to the
number of extended classes, which is linear with respect
to the number of possible labels. Furthermore, we con-
quer the challenge of model representation by proposing
proper ordering and K-classifier tricks. Interestingly, the
two tricks reveal a strong connection between the CFT
algorithm (which is derived from the label powerset ap-
proach) and the label-wise decomposition approaches.

Finally, we conquer the training challenge by modifying
the famous Filter Tree algorithm (Beygelzimer et al., 2008)
for CSMLC. The modification comes from revisiting the
theoretical bound of Filter Tree, which allows the proposed
CFT algorithm to only focus on some key tree nodes for
training efficiency.

We conduct experiments on nine real-world datasets to val-
idate the proposed CFT algorithm. Experimental results
demonstrate that for specific evaluation criteria, CFT is
competitive with special-purpose algorithms, such as PCC
with specifically designed inference rules or the state-of-
the-art MLkNN algorithm (Zhang & Zhou, 2007). For gen-
eral criteria, for which there is as yet no inference rule for
PCC, CFT can reach significantly better performance. The
results justify the superiority of the proposed CFT for gen-
eral CSMLC problems.

2. Problem Setup
In a multi-label classification problem, we denote the fea-
ture vector by x ∈ Rd and its relevant label set by
Y ⊆ {1, 2, ...,K}, where K is the number of classes.
The label set Y is commonly represented as a label vec-
tor, y ∈ {0, 1}K , where y[k] = 1 if and only if k ∈ Y .
Given a datasetD = {(xn,yn)}Nn=1, which contains N iid
training examples (xn,yn) drawn from an unknown distri-
bution P , the goal is to design an algorithm that uses D
to find a classifier h : Rd → {0, 1}K in the training stage,
with the hope that h(x) closely predicts y of an unseen x
in the prediction stage when (x,y) is drawn from P .

For evaluating the closeness of the prediction ŷ = h(x),
one of the most common criteria is called the Hamming
loss Hamming(y, ŷ) = 1

K

∑K
k=1Jy[k] 6= ŷ[k]K. Note that

the Hamming loss evaluates each label component sepa-
rately and equally weighted. In addition to the Hamming
loss, there are many other criteria that evaluate the compo-
nents of ŷ jointly; these include the 0/1 loss, the Rank loss,
the F1 score and the Accuracy score (Tsoumakas et al.,
2010). In this paper, we will use loss to denote the criterion
that shall be minimized, and score to denote the criterion
that shall be maximized.

The variety of criteria calls for a general setup of multi-
label classification, called cost-sensitive multi-label clas-
sification (CSMLC), which will be the main focus of
this work. CSMLC can be viewed as an extension of
the popular setup of cost-sensitive multi-class classifica-
tion (Domingos, 1999). In CSMLC, we assume that there
is a known cost function (matrix) C : {0, 1}K×{0, 1}K →
R, where C(y, ŷ) denotes the cost of predicting (x,y)
as ŷ. The cost matrix is not only part of the prediction
stage by using C(y, h(x)) to evaluate the performance of
any classifier h, but also part of the training stage by feed-
ing C as an additional piece of information to guide the
learning algorithm.

The CSMLC setup meets the goal of optimizing many ex-
isting criteria, such as the (per-example) F1 score, the Ac-
curacy score and the Rank loss (Tsoumakas et al., 2010).
Note that the setup above only considers a cost matrix C
indexed by a desired vector y and a predicted vector ŷ.
Thus, the setup cannot fully cover some more complicated
evaluation criteria such the micro-F1 score and the macro-
F1 score, which are defined on a set of vectors. Studying
the CSMLC setup can be viewed as an intermediate step
toward tackling those complicated criteria in the future.

There are many existing algorithms for tackling the multi-
label classification, but they either do not seriously take the
cost matrix (criteria) into account, or only aim at a few spe-
cific cost matrices. That is, general algorithms for CSMLC
have not been well studied. One intuitive family of algo-
rithms is label-wise decomposition. For instance, the bi-
nary relevance (BR) algorithm (Tsoumakas et al., 2010)
decomposes D = {(xn,yn)}Nn=1 into K binary classi-
fication datasets Dk = {(xn,yn[k])}Nn=1, and trains K
independent binary classifiers hk with Dk for predict-
ing y[k]. One extension of BR is the classifier chain (CC)
algorithm (Read et al., 2009), which takes Dk =
{(zn,yn[k])}Nn=1 and zn = (xn,yn[1], ...,yn[k − 1]), to
train hk. One practical variant of CC, named CC-P, takes
the predicted labels ŷ[k] instead of the true labels y[k] as
the features in zn.

Because CC-P (as well as BR/CC) predicts ŷ[k] separately
by each hk, arguably their main goal is to minimize the
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Hamming loss (Tsoumakas et al., 2010). Extending CC-
P for general CSMLC, however, is non-trivial, because it
is difficult to embed the 2K × 2K possible C(y, ŷ) cost
components into K separate steps of training. One al-
gorithm that solves the difficulty for some specific cost
matrices is the probabilistic classifier chain (PCC) (Dem-
bczynski et al., 2010). PCC avoids the embedding issue
in training by adopting a soft version of CC-P/CC without
any cost information to estimate the conditional probabil-
ity P (y|x). The probabilistic view allows PCC to interpret
CC as greedily maximizing the 0/1 loss through the chain
rule. During prediction, PCC considers the cost matrix for
making the Bayes-optimal decision, which is based on an
efficient inference rule that has been specifically designed
for the cost matrix.

The potential drawback of PCC is that not only is it non-
trivial to estimate the conditional probability but it is also
challenging to design an efficient inference rule for each
cost matrix. Because of the latter challenge, PCC currently
can be used only to exactly tackle the Hamming loss, Rank
loss, and the F1 score (Dembczynski et al., 2010; 2012a;
2011). PCC can also be used with some search-based in-
ference rule to approximately optimize the 0/1 loss (Dem-
bczynski et al., 2012b; Kumar et al., 2013), but not other
criteria in CSMLC.

Another major algorithm, known as label powerset (LP),
reduces multi-label classification to multi-class classifica-
tion (Tsoumakas et al., 2010). LP treats each unique pat-
tern of the label vector as a single extended class. That is,
the K possible labels are encoded to 2K extended classes
via a bijection function enc : {0, 1}K → {1, ..., 2K}. Dur-
ing training, LP transforms D into Dm = {(xn, cn)}Nn=1,
where cn = enc(yn), and trains a multi-class classifier hm

from Dm. Then during prediction, LP takes h(x) =
enc−1(hm(x)). Trivially, LP focuses on the 0/1 loss, be-
cause the error rate of hm in the reduced problem is equiv-
alent to the 0/1 loss of h. The disadvantage is that the
exponentially many extended classes makes LP infeasible
and impractical in general.

Lo et al. (2011) propose the CS-RAKEL algorithm that op-
timizes some weighted Hamming loss by extending from
RAKEL (Tsoumakas & Vlahavas, 2007), a representative
algorithm between the label-wise decomposition and label
powerset approaches. Somehow CS-RAKEL is designed
for specific application needs and cannot tackle general
CSMLC problems.

In summary, some related algorithms and their correspond-
ing criteria are shown below. None of them can tackle gen-
eral CSMLC problems.

Algorithms Criteria Being Optimized
CC-P/CC Hamming loss or 0/1 loss
PCC Hamming loss, F1 score, Rank loss, 0/1 loss
LP 0/1 loss
CS-RAKEL Weighted Hamming loss

3. Tree Model for CSMLC
Inspired by the connection between CSMLC and the rich
literatures of cost-sensitive classification (Domingos, 1999;
Beygelzimer et al., 2008), we design a general CSMLC al-
gorithm via the connection. Note that LP reduces multi-
label classification to multi-class classification to optimize
the 0/1 loss. If we follow the same reduction step but start
from a general CSMLC problem, we end up with a cost-
sensitive classification problem of 2K extended classes
and (implicitly) a 2K × 2K cost matrix. Then any existing
cost-sensitive classification algorithms can be used to solve
CSMLC. We call this preliminary algorithm cost-sensitive
label powerset (CS-LP). As with LP, the exponential num-
ber of extended classes presents a computational challenge
for CS-LP. For example, using CS-LP to reduce CSMLC to
the weighted-all pair approach (Beygelzimer et al., 2005)
requires 2K(2K−1)

2 comparisons for making each predic-
tion.

Interestingly, PCC can be viewed as a special case of us-
ing CS-LP to reduce CSMLC to the famous Meta-Cost ap-
proach (Domingos, 1999). Meta-Cost estimates the condi-
tional probability during training and then makes the Bayes
optimal decision with respect to a cost matrix in prediction.
Similarly, PCC estimates the probability by CC-P/CC, and
then infers the optimal decision with respect to the cost ma-
trix by the specifically designed inference rule.

We take another route that uses CS-LP to reduce CSMLC to
tree models for cost-sensitive classification (Beygelzimer
et al., 2008). A similar idea based on using the Hamming
loss has been discussed in a blog post (Mineiro, 2011), but
the idea has not been seriously studied for general CSMLC
problems. Tree models form a binary tree by weighted
binary classifiers to conduct cost-sensitive classification.
Each non-leaf node of the tree is a binary classifier for de-
ciding which subtree to go to, and each leaf node represents
a class. Without loss of generality, we assume that the leaf
nodes are indexed orderly by 1, 2, ..., #classes. Making
a prediction for each instance follows the decisions of bi-
nary classifiers, starting from the root to the leaf. That is,
only O (log(#classes)) decisions are required for making
each prediction. In CS-LP, tree models result in O(K) time
for each prediction, of the same order as label-wise decom-
position approaches.

Nevertheless, the number of nodes on the resulting tree
structure is O(2K), which poses challenges in representa-
tion and training. We first tackle the representation chal-
lenge in this section, and then study algorithms for training
the tree model in Section 4.

Proper Ordering. Recall that CS-LP needs a bijec-
tive functions enc(·) : {0, 1}K → {1, ..., 2K} for encod-
ing y to c and decoding the predicted class ĉ to the cor-
responding label vector ŷ. Although a prediction ĉ can
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Figure 1. Proper Ordering. (a) Put labels on leaf nodes orderly (b)
Index internal nodes by paths.

be made within O(K) time in the tree model, the encod-
ing function requires a careful design to make both enc
and enc−1 efficient for the 2K possible inputs to those
functions. We first consider the proper ordering trick,
which lets enc(y) = BinaryNumber(y)+1. That is, we
treat each y as a binary string, encode it by computing its
corresponding integer in O(K), and decode accordingly,
as illustrated in Fig. 1(a). Based on proper ordering, if we
let {0, 1} represent the decision {L,R} in each classifier of
the tree, then the label vector y (extended class c) of each
leaf node is equivalent to the sequence of binary decisions
made from the root to the leaf. More generally, we can in-
dex each node of the tree by t ∈ {0, 1}k−1, as shown in
Fig. 1(b), where t is the sequence of binary decisions from
the root to the node on layer k.

K-Classifier Trick. Even with proper ordering, there
are 2K −1 total internal nodes (classifiers) on the tree. The
exponential number makes representing (and training) clas-
sifiers infeasible in practice. One existing idea for feasible
representations is called the 1-classifier trick (Beygelzimer
et al., 2008), which lets all 2K − 1 internal nodes t share
one classifier h(x, t). Nevertheless, using the 1-classifier
trick often requires the classifier to be of sufficient power
to capture different characteristics of different nodes. The
requirement makes the trick less suitable for practical use.
Therefore, we propose a trade-off, K-classifier trick, be-
tween using 1 classifier and 2K − 1 classifiers.

The K-classifier trick physically works as follows. After
proper ordering, ŷ[k] corresponds to the prediction made
by one of the nodes on layer k of the tree. In other words,
the purpose of all the nodes located on layer k is similar:
predicting ŷ[k]. The similar purpose allows us to view each
node as a part of a layer classifier of the form hk(x, t),
which takes an instance x and a node index t ∈ {0, 1}k−1
for predicting the k-th component of the label vector. Then
equivalently only K classifiers (one per each layer) are re-
quired for representing the tree.

Connection to CC-P. By the proper ordering and the K-
classifier tricks, predicting the extended class ĉ by the tree
from layer 1 (root) to layer K is equivalent to predicting
ŷ[1], ..., ŷ[K] by the K classifiers {h1, ..., hK} using x and
t. Such a prediction algorithm is exactly the same as those
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Figure 2. (a) Training of Top-down Tree; (b) Training of Filter
Tree. The cost matrix used is 1−(F1 score). (0/1, w) means the
direction based on proper ordering, and the weight for training the
instance on the node. The thick edge represents the prediction for
the instance by the trained classifier on the parent node.

used in CC-P, which uses the classifiers hk with exactly the
same inputs (the instance x and the predicted labels which
form the node index t in the tree) for predicting the next
label.

The use of the two tricks reveals an interesting connection
between two very different families of approaches: label-
wise decomposition can be viewed as a special case of la-
bel powerset (in prediction). In short, label powerset with
the tree model, proper ordering and K-classifiers tricks is
equivalent to CC-P for prediction. Thus, by studying the
role of the cost matrix during training, we can systemati-
cally extend CC-P to be cost-sensitive. Next, we will dis-
cuss how to train the K classifiers subject to the cost matrix
efficiently.

4. Training of Tree Model
There are two major algorithms for training the binary clas-
sifiers in the tree, Top-down Tree and Filter Tree (Beygelz-
imer et al., 2008).

Top-down Tree (TT). Top-down Tree trains classifiers
from layer 1 (root) to layer K. Formally, for each internal
node t on layer k, denote its left child as t0 and right child
as t1 on layer (k+1). Define t∗ as the leaf node (predic-
tion) with the minimum cost on the subtree Tt rooted at t.
Then for each training example (xn,yn) that reaches t dur-
ing top-down training, we form a example ((xn, t), bn, wn)
to train the weighted classifier hk, where the la-
bel bn = arg mini∈{0,1} C (yn, t

∗
i ) represents the optimal

decision, and the weight wn = |C (yn, t
∗
0)− C (yn, t

∗
1) |

represents the cost difference. Then the training examples
are split to two sets based on the decision of the trained
classifier hk, and are used to train the child nodes t0 and t1,
respectively. All the training examples are taken to train the
root classifier, and the whole tree is trained recursively with
such divide-and-conquer steps. Note that as illustrated in
Fig. 2(a), each training example (xn,yn) only contributes
to training the nodes that are on the path from the root to
the predicted leaf of the example.
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The time complexity of Top-down Tree for CSMLC is the
same as CC-P. In fact, if we take the Hamming loss, then
wn = 1

K is the same for each instance on every node in
the k-th layer, (xn, tn) = (xn, ŷn[1], ..., ŷn[k − 1]) and
bn = yn[k]. Thus, Top-down Tree with the Hamming loss
is equivalent to CC-P. That is, general Top-down Tree can
be viewed as a systematic extension of CC-P for general
CSMLC.

Uniform Filter Tree (UFT). It is known that Top-down
Tree may suffer from the weaker theoretical guaran-
tee (Beygelzimer et al., 2008). An alternative algorithm is
called Filter Tree, which trains the classifiers in a bottom-
up manner starting from the last non-leaf layer, and each
example (xn,yn) is used to train all nodes. As illustrated
in Fig. 2(b), the last non-leaf layer of classifiers is trained
by forming weighted examples based on the better leaf of
the two. After training, each node on the last layer de-
cides the winning leaf of the two by predicting on xn. Then
the winning labels form the new “leaves” of a smaller fil-
ter tree, and the classifiers on the upper layer are trained
similarly. Due to the bottom-up manner, on layer k, Filter
Tree considers all the predictions from layer k + 1 to layer
K. That is, Filter Tree split one original training example
to 2k−1 examples, one for each possible node t, to train all
of the 2k−1 nodes on the layer. When k is large, training on
layer k can thus be challenging. Compared with Top-down
Tree, Filter Tree is less efficient by considering all training
examples for each node, but enjoys a stronger theoretical
guarantee (Beygelzimer et al., 2008).

One possibility for training Filter Tree efficiently is to only
train a few nodes for each layer, with the hope that other
nodes can also perform decently because of the classifier-
sharing in the K-classifier trick. The original Filter Tree
work (Beygelzimer et al., 2008) suggests one simple ap-
proach that splits one example to train M uniformly cho-
sen nodes on the k-th layer to approximate the full training
of 2k−1 nodes. We call this algorithm Uniform Filter Tree
for CSMLC.

Condensed Filter Tree (CFT). In Filter Tree, there are
2K possible traversing paths from the root to the leaves for
each instance; however, many of them are seldom needed
if we have reasonably good classifiers, such as paths that
result in high costs. Therefore, we can shift our focus to
the important nodes on each layer instead of uniform sam-
pling for each instance. Next, we revisit the regret bound
of Filter Tree, and show that the bound can be revised to
focus on a key path of the nodes on the tree.

In CSMLC, for a feature vector x and some distribution
P|x for generating the label vector y, the regret rg of a
classifier h on x is defined as

rg(h,P) = Ey∼P|x [C(h(x),y)]−min
g

Ey∼P|x [C(g(x),y)] .

For a distribution that generates weighted binary examples
(x, b, w), the regret can be defined similarly by using w as
the cost of a wrong prediction (of b) and 0 as the cost of a
correct prediction.

Let y∗ = arg minỹ Ey∼P |xC(y, ỹ) be the ideal prediction
of x under P . When t′ is an ancestor (prefix) of t on the
tree, denote 〈t′, t〉 as a list (path) that contains the nodes on
the path from node t′ to t. We call 〈r,y∗〉 the ideal path
of the tree for x, where r is the root of the tree. Similarly,
for each node t, we can define the ideal path of the sub-
tree Tt rooted at t. Beygelzimer et al. (2008) prove that for
Filter Tree, the CSMLC regret of any tree-based classifier
is upper-bounded by the total regret of all the nodes on the
tree. Next, we show that the total regret of the nodes on the
ideal path can readily be used to upper-bound the CSMLC
regret.

Theorem 1. Under the proper ordering and K-classifier
tricks, for each x and the multi-label classifier h formed by
chaining K binary classifiers (h1, ..., hK) as in the predic-
tion procedure of Filter Tree, the regret rg(h,P) is no more
than∑
t∈〈r,y∗〉

Jhk(x, t) 6= y[k]Krg
(
hk(x,t),FTt(P,hk+1,...,hK)

)
,

where k denotes the layer that t is on, and
FTt (P, hk+1, ..., hK) represents the procedure that
generates weighted examples (x, b, w) to train the node at
index t based on sampling y from P|x and considering the
predictions of classifiers in the lower layers.

Proof. For each node t on layer k, hk directs the prediction
procedure to move to either the node t0 or t1. Without
loss of generality, assume hk(x, t)=1. We denote t̂ as the
prediction (leaf) on x when starting at node t. For each leaf
node ỹ, let C̄(ỹ) ≡ Ey∼P|xC(y, ỹ). Then the node regret
rg(t) is simply C̄(t̂1)−mini∈{0,1} C̄(t̂i).

In addition to the regret of nodes, we also define the
regret of the subtree Tt rooted at node t. The re-
gret of the subtree Tt is as defined as the regret of the
predicted path (vector) t̂ within the subtree Tt, that is,
rg(Tt) = C̄(t̂)− C̄(t∗) , where t∗ denotes the optimal

prediction (leaf node) in the subtree Tt. By this definition,
rg(h,P) is simply rg(Tr).

The proof can be made by replacing the total regret with
rg(Tr) in the original Filter Tree work (Beygelzimer et al.,
2008). Due to the space limit, we omit the complete proof
here.

In Theorem 2, the bound is related to certain nodes on
the ideal path for each training example. The bound in-
spires us to first consider using each training example to
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Figure 3. The thick edge represents the predition of the corre-
sponding parent node. The ideal path is 〈r, t∗〉 and t is the first
mis-classified node; the ideal path of subtree Tt1 is 〈t1, t∗1〉 and
t10 is the first mis-classified node. Both nodes t and t10 are on
the predicted path 〈r, t̂1〉.

only train the K nodes in its ideal path to get the classi-
fiers h1, .., hK for each layer. Then we can find the up-
permost mis-classified node t on the ideal path for each
example (xn,yn). Without loss of generality, assume t
is on the layer k, with y[k] = 0 and hk(x, t) = 1.
According to Theorem 2, we could decrease the regret
rg(h,P) (or rg(Tr)) by decreasing the node regret rg(t) =
C̄(t̂1)−mini∈{0,1} C̄(t̂i), which can be done by decreas-
ing C̄(t̂1).1 Because C̄(t∗1) is a constant, decreasing C̄(t̂1)
is equivalent to decreasing the regret, rg(Tt1) = C̄(t̂1) −
C̄(t∗1), of the subtree Tt1 . We can then recursively adopt
the above procedure to optimize the subtree regret rg(Tt1)
as shown in Fig. 3.

The procedure suggests decreasing the regret on 〈r, t〉 and
〈t, t̂〉, the predicted path of xn. Therefore, the next key
path for xn that should be included for training is its pre-
dicted path. That is, we can now train Filter Tree by adding
the predicted path for each xn. We call the resulting algo-
rithm Condensed Filter Tree, as shown in Algorithm 1. The
path-adding step can be repeated to further zoom into the
key nodes. The number of adding step can be treated as a
parameter M , and will be further discussed in Section 5.

In summary, we derive three efficient approaches for gen-
eral CSMLC with trees: TT (a systematic extension of
CC-P), UFT and CFT. Next, we compare them with other
existing algorithms by experiments.

5. Experiment
We conduct the experiments of different evaluation criteria
on nine real-world datasets2 (Tsoumakas et al., 2011; Read,
2012). In the experiments, we take three kinds of algo-
rithms in our comparison: (a) the label-wise decomposition
approaches, including classifier chain (CC), ensemble clas-

1Since t̂0 relates to regret of other nodes on the ideal path of
t, we cannot easily increase C̄(t̂0) to decrease rg(t).

2CAL500, emotions, enron, imdb, medical, scene,
slash, tmc and yeast.

Algorithm 1 Condensed Filter Tree for CSMLC
1: D = {(xn,yn)}Nn=1; Dp = {((xn,yn),yn)}Nn=1

2: for m = 1 to M iterations do
3: for each layer k from layer K to root do
4: Dk = ∅
5: for each instance ((xn, ỹn),yn) ∈ Dp do
6: t = (ỹn[1], ..., ỹn[k]); zn = (xn, t)
7: bn = arg mini∈{0,1} C(yn, t̂i)

8: wn=|C(yn, t̂1)-C(yn, t̂0)|
9: Dk ← Dk ∪ (zn, bn, wn)

10: end for
11: hk ← train(Dk)
12: end for
13: if m < M then
14: for each instance (xn,yn) ∈ D do
15: ŷn = predict(h1, ..., hK ,xn)
16: Dp ← Dp ∪ ((xn, ŷn),yn)
17: end for
18: end if
19: end for

sifier chain (ECC), and probabilistic classifier chain (PCC);
(b) the tree-based models, including top-down tree (TT),
uniform filter tree (UFT) and condensed filter tree (CFT);
(c) a state-of-the-art algorithm that does not explicitly take
cost into account, MLkNN (Zhang & Zhou, 2007). We
first consider three cost matrices: Hamming loss, Rank
loss=

∑
y[i]>y[j]

(
Jŷ[i]< ŷ[j]K+ 1

2Jŷ[i]= ŷ[j]K
)

and F1 score=

2‖y∩ŷ‖1
‖y‖1+‖ŷ‖1 . The three matrices corresponds to known ef-
ficient inference rules for PCC (Dembczynski et al., 2010;
2011). Then we take other criteria for comparison in Sec-
tion 5.3.

We couple PCC with L2-regularized logistic regression and
other algorithms with linear support vector machines im-
plemented in LIBLINEAR (Fan et al., 2008). For MLkNN,
we use the implementation in Mulan (Tsoumakas et al.,
2011). In each run of the experiment, we randomly sam-
ple 50% of the dataset for training and reserve the rest for
testing. For UFT and CFT, we restrict the maximum M to
8 for efficiency. For other parameters of each algorithm,
we use cross-validation on the training set to search the
best choice. Finally, Tables 1, 2 and 3 list the results for
the three cost matrices, respectively, with the mean and
the standard error over 40 different random runs, and the
best result of each dataset is bolded. We also compare CFT
with other algorithms based on the t-test at 95% confidence
level. The number of datasets that CFT wins, ties and losses
are shown in Table 4.
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Table 1. The result of Hamming loss (the best (lowest) ones are marked in bold)
Dataset CC ECC MLkNN PCC TT(CC-P) UFT CFT
CAL. 0.1376± 0.002 0.1374± 0.002 0.1379± 0.002 0.1370± 0.002 0.1375± 0.002 0.1489± 0.005 0.1368± 0.002
emo. 0.2613± 0.029 0.2501± 0.022 0.2122± 0.012 0.2297± 0.011 0.2435± 0.015 0.2222± 0.014 0.2138± 0.009
enron 0.0465± 0.001 0.0466± 0.001 0.0540± 0.001 0.0462± 0.001 0.0467± 0.001 0.0551± 0.001 0.0467± 0.001
imdb 0.0808± 0.000 0.0713± 0.000 0.0714± 0.000 0.0714± 0.000 0.0715± 0.000 0.0715± 0.000 0.0715± 0.000
medical 0.0109± 0.001 0.0113± 0.001 0.0176± 0.001 0.0110± 0.001 0.0108± 0.001 0.0119± 0.001 0.0102± 0.001
scene 0.1118± 0.004 0.0971± 0.004 0.0942± 0.004 0.0962± 0.003 0.0980± 0.003 0.1032± 0.003 0.1004± 0.003
slash 0.0418± 0.001 0.0383± 0.000 0.0514± 0.001 0.0386± 0.001 0.0388± 0.001 0.0375± 0.001 0.0383± 0.001
tmc 0.0571± 0.000 0.0565± 0.000 0.0669± 0.000 0.0576± 0.000 0.0575± 0.000 0.0574± 0.000 0.0572± 0.000
yeast 0.2107± 0.003 0.2009± 0.004 0.1981± 0.003 0.2006± 0.003 0.2000± 0.002 0.2008± 0.002 0.2013± 0.003

Table 2. The result of Rank loss (the best (lowest) ones are marked in bold)
Dataset CC ECC MLkNN PCC TT UFT CFT
CAL. 1516.0± 60.4 1432.6± 39.0 1408.9± 21.3 967.93± 12.57 965.49± 11.20 968.40± 12.03 963.13± 10.99
emo. 2.697± 0.315 2.350± 0.299 1.906± 0.120 1.763± 0.102 1.868± 0.134 1.714± 0.131 1.632± 0.093
enron 44.190± 0.736 42.625± 0.775 55.959± 1.386 24.379± 0.557 25.144± 0.704 25.622± 0.576 24.907± 0.625
imdb 21.312± 0.299 22.559± 0.283 24.396± 2.345 12.620± 0.044 12.665± 0.047 12.638± 0.046 12.637± 0.049
medical 5.882± 0.595 5.800± 0.564 5.826± 0.565 2.942± 0.327 3.611± 0.431 2.812± 0.291 3.602± 0.455
scene 1.022± 0.053 0.922± 0.030 0.853± 0.046 0.696± 0.024 0.744± 0.029 0.764± 0.026 0.739± 0.028
slash 6.603± 0.132 6.467± 0.131 8.259± 0.259 3.835± 0.080 4.358± 0.152 3.965± 0.065 4.289± 0.074
tmc 7.704± 0.089 7.306± 0.139 5.329± 0.079 3.952± 0.034 3.924± 0.042 3.912± 0.040 3.894± 0.040
yeast 9.596± 0.224 9.208± 0.143 9.735± 0.247 8.753± 0.140 8.752± 0.138 8.813± 0.148 8.747± 0.118

Table 3. The result of F1 score (the best (highest) ones are marked in bold)
Dataset CC ECC MLkNN PCC TT UFT CFT
CAL. 0.319± 0.028 0.368± 0.015 0.318± 0.010 0.460± 0.006 0.447± 0.006 0.454± 0.005 0.473± 0.004
emo. 0.416± 0.087 0.489± 0.068 0.579± 0.030 0.639± 0.018 0.550± 0.061 0.619± 0.029 0.637± 0.016
enron 0.538± 0.010 0.547± 0.011 0.385± 0.021 0.574± 0.007 0.580± 0.009 0.545± 0.011 0.598± 0.010
imdb 0.256± 0.001 0.157± 0.015 0.001± 0.000 0.352± 0.015 0.371± 0.001 0.358± 0.001 0.374± 0.001
medical 0.784± 0.017 0.779± 0.014 0.523± 0.038 0.817± 0.015 0.789± 0.021 0.797± 0.011 0.796± 0.014
scene 0.687± 0.012 0.701± 0.010 0.655± 0.023 0.735± 0.011 0.721± 0.010 0.667± 0.007 0.717± 0.010
slash 0.489± 0.012 0.496± 0.007 0.136± 0.054 0.577± 0.008 0.517± 0.011 0.540± 0.005 0.514± 0.007
tmc 0.684± 0.003 0.693± 0.003 0.606± 0.007 0.714± 0.002 0.709± 0.002 0.687± 0.002 0.714± 0.002
yeast 0.622± 0.007 0.634± 0.007 0.607± 0.012 0.638± 0.008 0.639± 0.005 0.649± 0.006 0.649± 0.006

Table 5. The result of Acc. score, and Comp. score (best ones are marked in bold)
Dataset Accuracy(↑) Composite Score(↑)

PCC-F1 CFT PCC-Ham or F1 CFT
CAL. 0.303± 0.008 0.315± 0.004 −0.362± 0.012 −0.302± 0.013
emo. 0.534± 0.021 0.535± 0.015 −0.566± 0.100 −0.460± 0.063
enron 0.453± 0.009 0.476± 0.009 0.300± 0.017 0.351± 0.012
imdb 0.242± 0.010 0.268± 0.001 −0.263± 0.055 −0.096± 0.001
medical 0.783± 0.015 0.764± 0.018 0.758± 0.016 0.747± 0.018
scene 0.676± 0.011 0.669± 0.010 0.150± 0.036 0.170± 0.022
slash 0.511± 0.009 0.481± 0.006 0.263± 0.012 0.277± 0.011
tmc 0.613± 0.004 0.614± 0.002 0.402± 0.007 0.419± 0.004
yeast 0.518± 0.012 0.539± 0.006 −0.398± 0.019 −0.376± 0.019

Table 4. CFT versus the other algorithms based on t-test at 95%
confidence level (#win/#tie/#loss)

criteria CC ECC MLkNN PCC TT UFT
Ham. 7/1/1 2/4/3 5/1/3 4/3/2 5/2/2 6/2/1
Rank. 9/0/0 9/0/0 9/0/0 3/2/4 4/5/0 6/1/2
F1. 9/0/0 9/0/0 9/0/0 4/2/3 7/1/1 6/2/1
Total 25/1/1 20/4/3 23/1/3 11/7/9 16/8/3 18/5/4

5.1. Cost-insensitive versus Cost-sensitive

Table 1 compares all the algorithms based on the Hamming
loss. As discussed in Section 4, CC-P is equivalent to TT
with Hamming loss. In Table 1, the five algorithms that can
reach the best performance are ECC, MLkNN, PCC, UFT
and CFT. Moreover, ECC successfully improves the per-
formance of CC. The state-of-the-art algorithm, MLkNN,
often achieves the best results. When looking at Table 4 for
t-test results, CFT is competitive to ECC and PCC, while
often being better than MLkNN.

For the other two criteria, as shown in Tables 2 and 3, the
algorithms that do not consider the cost explicitly, such as
CC, ECC and MLkNN, are generally worse than the cost-

sensitive algorithms. The results demonstrate the impor-
tance and effectiveness of properly considering the cost in-
formation in the algorithm.

5.2. Comparison with Tree-based Algorithms

In Tables 1, 2, 3 and 4, when comparing CFT with TT,
CFT wins on 16 and ties on 8 of the 27 cases by t-test.
The results justify the importance of bottom-up training of
the tree model. When comparing UFT with CFT, CFT is
better than UFT on 18 and ties on 5 out of 27 cases by t-
test. The results demonstrate the effectiveness of focusing
on key paths (nodes).
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We further study UFT and CFT for varying M . We show
the result of F1 score on emotions, while observing simi-
lar behaviors across other datasets and criteria. When num-
ber of paths increases, both the training and testing per-
formance of CFT and UFT are improved. Moreover, CFT
converges to a better F1 score than UFT as M increases,
which explains its better performance during testing.

While CFT is usually better than UFT, on medical and
slash, CFT loses to UFT in Tables 2 and 3. We study the
reasons and find that the cause is overfitting. For instance,
the training Rank loss of CFT on medical is 0.083, which
is much smaller than the UFT result of 0.264. That result
implies that CFT indeed optimizes the desired evaluation
criteria during training, but the focus on key paths could
suffer worse generalization in a few datasets. A preliminary
study shows that a mixture of CFT and UFT is less prone
to overfitting.

5.3. Comparison with PCC and CFT

For the Hamming loss, the Rank loss and the F1 score,
the exact inference algorithms of PCC have been pro-
posed (Dembczynski et al., 2010; 2011). From Tables 1,
2, 3 and 4, PCC and CFT are competitive to each other on
the three criteria, having similar number of winning and
losing cases.

To demonstrate the full ability of CFT, we consider two
other criteria which there is no inference rule (yet) for PCC,
including Accuracy3 (Boutell et al., 2004; Tsoumakas
et al., 2010), and a composite score from the F1 score
and the Hamming loss in Table 5. The definitions of the
criteria are Accuracy = ‖y∩ŷ‖1

‖y∪ŷ‖1 , and Composite Score=
F1 Score−5×HAM Loss.

Here we use the approximate inference rules for PCC. For
the Accuracy score, we couple PCC with the inference rule
of the F1 score in view of the similarity in the formula.
For the Composite score, which considers the F1 score and
the Hamming loss concurrently, we run PCC with either
the inference rule of the F1 score or the inference rule of
the Hamming loss, and optimistically report the best one in
Table 5.

Table 5 can be summarized as follows. Due to the similar-
ity in the formula, CFT and PCC-F1 reach similar results
for the Accuracy score. For the Composite score, which is
similar to neither the F1 score nor the Hamming loss, PCC
is much worse than CFT.

When K is small, PCC can use exhaustive search to enu-
merate 2K possible ŷ and locate the Bayes optimal ŷ. We
further list the performance of this PCC-exhaust approach
for emotions, scene and yeast, which are of no more

3α-Accuracy with α = 1

than 14 labels.

Infer. Acc.(↑) Comp.(↑)
emo. scene yeast emo. scene yeast

Apprx. 0.534 0.676 0.518 -0.566 0.150 -0.398
Exhau. 0.530 0.709 0.535 -0.570 0.176 -0.383

By the exhaustive inference, the performance of PCC is sig-
nificantly improved in most cases. The good performance
highlights the importance of exact and efficient inference
rules for PCC. Nevertheless, if the desired evaluation crite-
ria are complicated, it is non-trivial to design exact and ef-
ficient inference rules. When comparing PCC-exhaust with
CFT, we see that CFT wins on 3 cases, ties on 1 case and
loses on 2 cases. Thus, the efficient CFT is quite competi-
tive with the inefficient PCC-exhaust in performance.

6. Conclusion
We tackle the general cost-sensitive multi-label classifica-
tion problem without any specific subroutine for different
evaluation criteria, which meets the demands in real-world
applications. We proposed the condensed filter tree (CFT)
algorithm by coupling several tools and ideas: the label
powerset approach for reducing to cost-sensitive classifi-
cation, the tree-based algorithms for cost-sensitive classifi-
cation, the proper-ordering and K-classifier tricks that uti-
lize the structural property of multi-label classification, and
the theoretical bound to locate the key tree nodes (paths)
for training. The resulting CFT is as efficient as the com-
mon label-wise decomposition approaches in training and
prediction, with respect to the number of possible labels.
Experimental results demonstrate that CFT is competitive
with leading approaches for multi-label classification, and
usually outperforms those approaches on the evaluation cri-
teria that those approaches are not designed from.

CFT can currently handle evaluation criteria defined by a
desired label vector and a predicted label vector. We can
view CFT as the first step towards tackling more compli-
cated evaluation criteria, which shall be an important future
research direction.
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A. Proof of Theorem 2
Theorem 2. Under the proper ordering and K-classifier
tricks, for each x and the multi-label classifier h formed by
chaining K binary classifiers (h1, ..., hK) as in the predic-
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tion procedure of Filter Tree, the regret rg(h,P) is

rg(h,P)≤
∑

t∈〈r,y∗〉

Jhk(x,t)6=y[k]Krg

(
hk(x,t),FTt(P,hk+1,...,hK)

)
,

where k denotes the layer that t is on, and
FTt (P, hk+1, ..., hK) represents the procedure that
generates weighted examples (x, b, w) to train the node at
index t based on sampling y from P|x and considering the
predictions of classifiers in the lower layers.

Proof. The proof is similar to the one in (Beygelzimer
et al., 2008), which is based on defining the overall-regret
of any subtree. The key change in our proof is to define the
path-regret of any subtree to be the total regret of the nodes
on the ideal path of the subtree. The induction step follows
similarly from the proof in (Beygelzimer et al., 2008) by
considering two cases: one for the ideal prediction to be in
the left subtree and one for the ideal prediction to be in the
right. Then an induction from layer K to the root proves
the theorem.

For each node t on layer k, hk makes a weighted binary
classification decision of 0 or 1, which directs the predic-
tion procedure to move to either the node t0 or t1. Without
loss of generality, assume hk(x, t)=1. We denote t̂ as the
prediction (leaf) on x when starting at node t. For each leaf
node ỹ, let C̄(ỹ) ≡ Ey∼P|xC(y, ỹ). Then the node re-
gret rg(t) is simply C̄(t̂1)−mini∈{0,1} C̄(t̂i). Obviously,
rg(t) ≥ C̄(t̂1)− C̄(t̂0) for all node t.

In addition to the regret of nodes, we also define the
regret of the subtree Tt rooted at node t. The re-
gret of the subtree Tt is as defined as the regret of the
predicted path (vector) t̂ within the subtree Tt, that is,
rg(Tt) = C̄(t̂)− C̄(t∗) , where t∗ denotes the optimal

prediction (leaf node) in the subtree Tt. By this definition,
rg(h,P) can be treated as rg(Tr).

We now prove by induction from layer K to the root. The
induction hypothesis is that

rg(Tt) ≤
∑

t′∈〈t,t∗〉

Jhk(x, t′) 6= y[k]Krg(t′),

where k is the corresponding layer of each node t′. The
hypothesis states that the regret of the subtree is bounded
by the sum of the regrets for the wrongly predicted nodes
from t to the ideal prediction t∗. The base case is the
reduction tree with one single internal node t and two
leaf nodes, which is a cost-sensitive binary classification
with rg(Tt) = rg(t) trivially. If h1 predicts correctly,
then rg(Tt) = 0. Otherwise rg(Tt) = rg(t). Then the
induction hypothesis is satisfied.

For the inductive step, for node t on layer k, assume

R0 ≡ rg(Tt0)≤
∑

t′∈〈t0,t∗0〉

Jhk(x, t′) 6= y[k]Krg(t′),

Table 6. The properties of each dataset
Dataset # Instances # Labels (K)
CAL500 502 174
emotions 593 6
enron 1702 53
imdb 86290 28
medical 662 45
scene 2407 6
slash 3279 22
tmc 28596 22
yeast 2389 144

and

R1 ≡ rg(Tt1)≤
∑

t′∈〈t1,t∗1〉

Jhk(x, t′) 6= y[k]Krg(t′).

The optimal prediction t∗ is either on the right subtree T1

or the left subtree T0. For the first case, it implies t∗ = t∗1
and y[k] = hk(x, t) = 1, then

rg(Tt) = C̄(t̂1)− C̄(t∗)

= C̄(t̂1)− C̄(t∗1)

= R1 ≤
∑

t′∈〈t1,t∗1〉

Jhk(x, t′) 6= y[k]Krg(t′)

=
∑

t′∈〈t,t∗〉

Jhk(x, t′) 6= y[k]Krg(t′).

For the second case, it implies t∗ = t∗0 and y[k] 6=
hk(x, t) = 1, then

rg(Tt) = C̄(t̂1)− C̄(t∗)

= C̄(t̂1)− C̄(t∗0)

= C̄(t̂1)− C̄(t̂0) + C̄(t̂0)− C̄(t∗0)
≤ rg(t) + R0

≤ rg(t) +
∑

t′∈〈t0,t∗0〉

Jhk(x, t′) 6= y[k]Krg(t′)

=
∑

t′∈〈t,t∗〉

Jhk(x, t′) 6= y[k]Krg(t′).

Then we complete the induction.

B. Datasets
Here we summarize the basic statistics of the used datasets
in Table 6.

References
Beygelzimer, A., Dani, V., Hayes, T., Langford, J., and

Zadrozny, B. Error limiting reductions between classi-
fication tasks. In Proceedings of the 22nd International
Conference on Machine Learning, 2005.



Condensed Filter Tree for Cost-Sensitive Multi-Label Classification

Beygelzimer, A., Langford, J., and Ravikumar, P. Error
correcting tournaments, 2008. URL http://arxiv.
org/abs/0902.3176.

Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. Learn-
ing multi-label scene classification. Pattern Recognition,
2004.

Dembczynski, K., Cheng, W., and Hüllermeier, E. Bayes
optimal multilabel classification via probabilistic clas-
sifier chains. In Proceedings of the 27th International
Conference on Machine learning, 2010.

Dembczynski, K., Waegeman, W., Cheng, W., and
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