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Abstract

Generative Adversarial Network (GAN) has been shown to possess the capability
to learn distributions of data, given infinite capacity of models [1, 2]. Empirically,
approximations with deep neural networks seem to have “sufficiently large” ca-
pacity and lead to several success in many applications, such as image generation.
However, most of the results are difficult to evaluate because of the curse of dimen-
sionality and the unknown distribution of the data. To evaluate GANs, in this paper,
we consider simple one-dimensional data coming from parametric distributions
circumventing the aforementioned problems. We formulate rigorous techniques for
evaluation under this setting. Based on this evaluation, we find that many state-of-
the-art GANs are very difficult to train to learn the true distribution and can usually
only find some of the modes. If the GAN has learned, such as MMD GAN, we
observe it has some generalization capabilities.

1 Introduction
Generative Adversarial Network (GAN) is family of generative models that aims to generate novel
samples from the data distribution rather than estimating the underlying distribution. Many existing
works have demonstrated “performance” of GANs to be promising. For instance, a deep convolutional
GAN [3] could generate variety of plausible natural images.

However, objectively and quantitatively evaluating a given GAN is still an open problem. Due to the
curse of dimensionality, most non-parametric evaluations based on samples from the distributions
are inapplicable. Most of existing works resort to heuristics [4], auxiliary classifiers [5], or Gaussian
smoothing [6] in an attempt to justify working of existing GANs. Unfortunately, error analysis of such
methods are difficult and as a result they are of limited value in understanding the true performance
of GAN. In a different line of work, limited capacities of GANs have been shown by constructing
birthday paradoxes [7]. Although this evaluation is theoretically grounded, it still relies on (subjective)
human eyes to determine the duplicate samples (images).

In this paper, instead of studying GANs on standard benchmarks (high dimensional), we evaluate
GANs on “seemly naive” one dimensional parametric distributions for both unconditional and
conditional cases. We argue for this 1D experiment as it allows us to use many statistical tools,
which might not be feasible in high dimensional cases, in order to gain several insights about
GANs. We begin by deriving the analytical probability transformations in the 1D case and prove its
uniqueness, which allows us to carry out many quantitative comparisons of the generator. Based on
these comparison metrics, to our surprise, we find that representative GANs may fail on these simple
cases and may be only able to capture (some of) the modes. Our experiments suggest us to rethink the
capacity and ability of GANs and the what the property of the real-world data the GANs can learn
reasonably well. On the other hand, if the GAN has learned the distribution well, we also observe its
generalization capability.

2 Existing Literature on GANs
We are interested in sampling from PX , where we are given {x

i

}n
i=1

⇢ X and x

i

⇠ PX . Generative
Adversarial Network (GAN) [1] trains a generator g

✓

parametrized by ✓ to transform samples
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z ⇠ PZ , where z 2 Z , into g

✓

(z) ⇠ P
✓

such that P
✓

⇡ PX . During the training, we estimate
the probabilistic discrepancy d(PX ,P

✓

), which is non-negative and d(PX ,P
✓

) = 0 iff PX = P
✓

.
We then update ✓ to minimize d(PX ,P

✓

) toward 0. Different d(PX ,P
✓

) results in different GAN
works [1, 8, 9, 10, 11, 2, 12, 13, 14]. We briefly review some works here.

Vanilla GAN The pioneering work [1] proposed to train a simple binary classifier f
�

, which
is called Discriminator (critics), to distinguish PX and P

✓

. They formulate the following min-max
objective to train f

�

and g

✓

jointly,
min

✓

max

�

E
x⇠PX log f

�

(x) + E
z⇠PZ log(1� f

�

(g

✓

(z))). (1)

This mini-max objective can be interpreted as a two-player game, where the generator g
✓

tries to
confuse the learned classifier f

�

[1]. The underlying d(PX ,P
✓

) for this setting was shown to be the
Jensen-Shannon (JS) divergence [1]. Although [3] demonstrate good generated images on several
benchmarks, training (vanilla) GAN by modeling f

�

as a binary classifier (JS divergence) is difficult
and unstable due to its discontinuous nature [15].

Wasserstein GAN The use of Wasserstein distance w(PX ,P
✓

) between two probability distri-
butions as d(PX ,P

✓

) in GAN was proposed by [2] and hence the name. Injecting the dual form of
Wasserstein distance, the objective for WGAN training is

min

✓

sup

kfkL1

E
x⇠PX f(x)� E

z⇠PZf(g✓(z))

| {z }
Wasserstein distance: w(PX ,P✓),

(2)

where kfk
L

 1 is the set of functions whose Lipschitz constant is no larger than 1. Deep neural
networks f

�

have been used to approximate kfk
L

 1 and it is found that in many cases training
WGAN is stabler than vanilla GAN [2].

MMD GAN Instead of using an auxiliary f

�

to measure d(PX ,P
✓

) as GAN and WGAN, use
of kernel maximum mean discrepancy (MMD) M

k

(PX ,P
✓

) [16] as d(PX ,P
✓

) has also be explored
[8, 9]. The resulting method, called Generative Moment Matching Network (GMMN), uses the
objective with a given kernel (e.g. Gaussian Kernel) k,

min

✓

EPX k(x, x
0
)� 2EPX ,P✓k(x, g✓(z)) + EP✓ , k(g✓(z), g✓(z

0
))

| {z }
MMD distance: Mk(PX ,P✓)

. (3)

From (3), MMD distance M

k

(PX ,P
✓

) can be easily estimated based on kernel evaluations without
training any deep neural network. However, although several theoretical guarantees are shown in [16],
GMMN fails on challenging benchmarks, such as CIFAR10. As a remedy, [12] propose MMD GAN

that improves GMMN by considering a adversarially-learned kernel for MMD distance. The objective
again becomes a min-max one and as derived by [12] is given by

min

✓

max

�

EPX k � f
�

(x, x

0
)� 2EPX ,P✓k � f

�

(x, g

✓

(z)) + EP✓ , k � f
�

(g

✓

(z), g

✓

(z

0
))

| {z }
MMD GAN distance: max� Mk�f�(PX ,P✓)

(4)

where k � f
�

(x, x

0
) = k(f

�

(x), f

�

(x

0
)) and k is Gaussian kernel. Note that WGAN can be treated

as a special case of MMD GAN by using linear kernel k, which only matches first-order moments.

Other GAN works There are other GAN works considering different distance measures. We
also review some works here. [10] generalize vanilla GAN [1] to consider general f -divergence.
[11] match distributions by using Stein metric with score functions. [17] extend WGAN from mean
matching to mean and covariance matching. [13] propose a WGAN-like algorithm by constraining
the second-order moment, which recovers chi-squared distance. [14] use Cramer distance, which is
similar to MMD GAN but with a different kernel.

3 Learning 1-D Distributions with GANs

We study GAN [1], WGAN [2] and MMD GAN [12]1 to transform N(0, 1) and Unif(�1, 1) to
N(23, 1) and Unif(22, 24). For critics, we use 4-layer MLP with 11, 29, 11 and 1 units. For generators,
we use use 4-layer MLP with 7, 13, 7 and 1 units. For both networks, we use ELU as the non-linear
activation function. The learning rate are searched in {10�2

, 10

�3

, 10

�4} for Adam. The ratio of
1Note that MMD GAN can be treated as a kernelized version of WGAN.
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Table 1: Performance of transforming N(0, 1) to different distributions.
Algo. N(23, 1) Cauchy(23, 1)

GAN

KSD: 0.2122 MAE: 0.5044 MSE: 0.3304 KSD: 0.3571 MAE: 4.4009 MSE: 98.097

WGAN

KSD: 0.4462 MAE: 0.6420 MSE: 0.6733 KSD: 0.3495 MAE: 2.5635 MSE: 56.390

MMD
GAN

KSD: 7.50e-3 MAE: 8.89e-3 MSE: 8.96e-5 KSD: 0.0123 MAE: 0.4099 MSE: 5.5917

updating critics and generators are searched in {2:1, 3:1, 4:1, 5:1}. We train each setting for 1000000
iterations and report the best results for each algorithm.
Theorem 1. (Uniqueness of 1D transformation) Given two one dimensional random variable Z ⇠
PZ and X ⇠ PX where both the probability distributions PZ and PZ are twice differentiable and

have support almost everywhere, there are at most two differentiable f such that f(Z) = X .

Proof. Let (⌦,B) be a measurable space and PZ and PX be two measures on this space. Denote
by p

Z

(·) and p

X

(·) be the densities corresponding to the measures PZ and PX respectively. Using
change of measure, one can write,

8A 2 B :

Z

A

p

X

(x)

����
dx

dz

���� dz =

Z

A

p

Z

(z)dz

8A 2 B :

Z

A

✓
p

X

(x)

����
dx

dz

����� p

Z

(z)

◆
dz = 0

(5)

Since the integral is 0 for any set A, the integrand must be zero identically, i.e. we have the following
differential equation:

p

X

(x)

����
dx

dz

����� p

Z

(z) = 0 (6)

This can be split as two first-order separable ordinary differential equations (ODE):

p

X

(x)

dx

dz

� p

Z

(z) = 0 or p

X

(x)

dx

dz

+ p

Z

(z) = 0 (7)

Now that solving the first ODE for example leads to PX (x) = PZ(z) + c, but as x, z ! 1 we know
that PX (x),PZ(z) ! 1, as a result c = 0 is the only valid option. Similar reasoning works for the
other case. As we assumed 8x : p

X

(x) > 0 and 8z : p

Z

(z) > 0, then each the ODE in (7) along
with the boundary condition has one unique solution, which completes the proof.

Based on Theorem 1, there are at most two continuous probability transformations f for 1D dis-
tribution, which can be simply derived by probability integral transform. We show the results of
transforming PZ = N(0, 1) to N(23, 1) and Cauchy(23, 1) in Table 1. We compare (1) g

✓

(z) with
the true transformation function and (2) the empirical distribution from 10, 000 samples with PX . We
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also report KSD, MAE and MSE, which are defined as

KSD = sup

x

|PX (x)�P
✓

(x)|, MAE =

Z 1

�1
|f(z)� ˆ

f(z)|dPZ(z), MSE =

Z 1

�1
(f(z)� ˆ

f(z))

2

dPZ(z),

where KSD is the metric used for Kolmogorov-Smirnov goodness of fit test.

Figure 1: Truth vs learned from WGAN-GP
code on Gaussian with µ = 0 and ⌃ = I .

As can be seen from Table 1 GAN fails to learn either
distribution, which may be caused by the difficulty
of its training [15]. WGAN can only match the mode
of PX . It is consistent with (2), which only compares
the first-order moment of the transformed data f(x).
Without the large capacity of network to approxi-
mate Lipschitz functions well, WGAN fails to match
the distributions. Here we used weight-clipping as
adopted in [2]. However, the more advanced WGAN-
GP [18] results in similar performance. We use the
implementation provided by [18]2 to learn a 2D Gaussian distribution with identity covariance, i.e.
unit variance in each of the two directions. 4-layer MLP with 512 hidden units for both critic and
generator are adopted by [18]. In Figure 1, the result is similar to Table 1 that WGAN cannot learn
the distribution well. On the other hand, MMD GAN, which can be treated as a kernelized extension
of WGAN, leverages the higher-order moment matching of MMD, and successfully matches distribu-
tions. If we train GAN/WGAN with much deeper and wider networks, the performance is improved
but is still not comparable to MMD GAN.

3.1 1D Distribution with Conditional GAN

We extend the 1D generation experiment to the conditional version based on [20]. In ad-
dition to z ⇠ Unif(�1, 1), the generator is also given µ

i

, with the goal to generate the
samples g

✓

(z|µ
i

) from N(µ

i

, 1). The critics then measure the discrepancy between P(x|µ)
and P(g

✓

(z|µ)). In the training, µ

i

is sampled from [�10,�8, · · · , 8, 10] uniformly. It can
be seen from Figure 2, similar to the previous result, both GAN and WGAN failed to
learn the conditional distributions. In the training, we only sampled µ among integers in
[�10, 10], but a well learned g(z|µ

i

), like the one obtained from MMD GAN, generalizes well
with non-integer µ as well as the µ outside of the range. This means without any explicit

Figure 2: The result of conditional generation on µ.

supervision, GAN could
learn the ideal transfor-
mation of X = µ + Z.
Note that the generator
has more capacity (4-layer
MLP) than to learn just a
straight line. It supports
GAN has capabilities to
generalize and learn the
distribution in a different
perspective from [7].

4 Discussion
In this paper, we study GANs’ learning capability on simple one-dimensional parametric distributions.
Surprisingly, vanilla GAN and WGAN fail on learning these distributions but only capture the mode
of the distributions. MMD GAN, which leverages prior knowledge on two-sample test, seems to
be able to learn. It may suggest a future direction of designing GAN’s algorithm by incorporating
more existing statistics results. In addition, we should rethink the property of current benchmarks,
which GAN and WGAN seem to have promising performance on them. On the other hand, we also
study the conditional generation on 1D parametric distribution. We show that, if GAN has learned the
distributions, it possesses some generalization capability rather than just memorizing the data.

2It is used to learn 8 mixture of Gaussians, where the covariance of each Gaussian is 0.0003125 ⇥ I in
line with the setup used by many literature on GANs [4, 18, 19]. However, we feel the setup is not good for
evaluating the performance of GANs as at such small variances the distribution essentially becomes point mass.
The success shown by previous works in capturing this almost point mass like GMM is in accordance to our
observation that GAN/WGAN is only able to identify the modes of the distribution but not the shape.
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Table 1: Performance of Various GAN

Target Simple WGAN MMD GAN

U
n
i
f
o
r
m

Uniform

MAE: 0.58596 MSE: 0.54683 MAE: 0.49854 MSE: 0.33143 MAE: 0.018418 MSE: 0.00045452

Gaussian

MAE: 0.64727 MSE: 0.73553 MAE: 0.77169 MSE: 0.95643 MAE: 0.023283 MSE: 0.0023875

Cauchy

MAE: 3.1459 MSE: 584.39 MAE: 4.1899 MSE: 613.05 MAE: 1.573 MSE: 376.41

Pareto

MAE: 10.271 MSE: 2.0718e+06 MAE: 9.7667 MSE: 2.072e+06 MAE: 9.6763 MSE: 2.0718e+06
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Table 2: Performance of Various GAN

Target Simple WGAN MMD GAN

G
a
u
s
s
i
a
n

Uniform

MAE: 0.48152 MSE: 0.3226 MAE: 0.49312 MSE: 0.32463 MAE: 0.029086 MSE: 0.0010261

Gaussian

MAE: 0.5044 MSE: 0.33039 MAE: 0.64197 MSE: 0.67326 MAE: 0.0088905 MSE: 8.9634e-05

Cauchy

MAE: 4.4009 MSE: 98.097 MAE: 2.5635 MSE: 56.39 MAE: 0.5397 MSE: 25.591

Pareto

MAE: 0.72926 MSE: 1.0338 MAE: 0.48144 MSE: 0.95841 MAE: 0.25368 MSE: 0.21395
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