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Abstract

The abundance of real-world data and limited labeling budget calls for active learning,

which is an important learning paradigm for reducing human labeling efforts. Many

recently developed active learning algorithms consider both uncertainty and represen-

tativeness when making querying decisions. However, exploiting representativeness

with uncertainty concurrently usually requires tackling sophisticated and challenging

learning tasks, such as clustering. In this paper, we propose a new active learning

framework, called hinted sampling, which takes both uncertainty and representative-

ness into account in a simpler way. We design a novel active learning algorithm within

the hinted sampling framework with an extended support vector machine. Experimental

results validate that the novel active learning algorithm can result in a better and more

stable performance than that achieved by state-of-the-art algorithms. We also show

that the hinted sampling framework allows improving another active learning algorithm

designed from the transductive support vector machine.

1 Introduction
Labeled data are the basic ingredients in training a good model in machine learning.

It is common in real-world applications when one needs to cope with a large amount

of data with costly labeling steps. For example, in the medical domain, a doctor may

be required to distinguish (label) cancer patients from non-cancer patients according to

their clinical records (data). In such applications, an important issue is to achieve high

accuracy within a limited labeling budget. This issue demands active learning (Settles,

2009), which is a machine learning setup that allows iteratively querying the labeling or-

acle (doctor) in a strategic manner to label some selected instances (clinic records). By

using a suitable query strategy, an active learning approach can achieve high accuracy

within a few querying iterations i.e., only a few calls to the costly labeling oracle (Set-

tles, 2009).



One intuitive approaches in active learning is called uncertainty sampling (Lewis

and Gale, 1994). This approach maintains a classifier on hand, and queries the most

uncertain instances, whose uncertainty is measured by the closeness to the decision

boundary of the classifier, to fine-tune the boundary. However, the performance of un-

certainty sampling becomes restricted owing to the limited view of the classifier. In

other words, uncertainty sampling can be hair-splitting on the local instances that con-

fuse the classifier, but not considering the global distribution of instances. Therefore,

queries may not represent the underlying data distribution well, leading to unsatisfac-

tory performance of uncertainty sampling (Settles, 2009).

As suggested by Cohn et al. (1996) as well as Xu et al. (2003), active learning can

be improved by considering the unlabeled instances in order to query the instance that

is not only uncertain to the classifier on hand but also “representative” to the global

data distribution. There are many existing algorithms that use unlabeled information to

improve the performance of active learning, such as representative sampling (Xu et al.,

2003).

Representative sampling makes querying decisions by not only the uncertainty of

each instance, but also the representativeness, which is measured by determining whether

the instances reside in a dense area. Typical representative sampling algorithms (Xu

et al., 2003; Nguyen and Smeulders, 2004; Dasgupta and Hsu, 2008) estimate the un-

derlying data distribution via clustering methods. However, the performance of the al-

gorithms depends on the result of clustering, which is a sophisticated and non-trivial

task, especially when the instances are within a high dimensional space. Another

state-of-the-art algorithm (Huang et al., 2010) models the representativeness by esti-

mating the potential label assignment of the unlabeled instances on the basis of the

min-max view of active learning (Hoi et al., 2008). The performance of this algorithm

depends on the results of estimating the label assignments, which is also a complicated

task. Yet another representative sampling algorithm makes potential label assignment

of the unlabeled instances from the view of transductive learning, such as transductive

SVM (TSVM; Wang et al., 2011).

In this work, we propose a novel framework of active learning, hinted sampling,

which considers the unlabeled instances as hints (Abu-Mostafa, 1995) of the global

data distribution, instead of directly clustering them or estimating their label assign-

ments. This leads to a simpler active learning algorithm. Similar to representative sam-

pling, hinted sampling also considers both uncertainty and representativeness. Some-

how hinted sampling enjoys the advantage of simplicity by avoiding the clustering or

label-assignment estimation steps. We demonstrate the effectiveness of hinted sampling

by designing a novel algorithm with support vector machine (SVM; Vapnik, 1998). In

the algorithm, we extend the usual SVM to a novel formulation, HintSVM, which is

easier to solve than either clustering or label-assignment estimation. We then study a

simple hint selection strategy to improve the efficiency and effectiveness of the proposed

algorithm. Experimental results demonstrate that the simple HintSVM is comparable

to the best of both uncertainty sampling and representative sampling algorithms, and

results in better and more stable performance than other state-of-the-art active learning

algorithms.

To demonstrate the generality of hinted sampling, we further extend the TSVM

approach for active learning (Wang et al., 2011) to HintTSVM to show that the proposed
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framework can benifit not only uncertainty sampling but also representative sampling.

Experimental results confirm the promising performance of HintTSVM as well as the

usefulness of the proposed hinted sampling framework.

The rest of the paper is organized as follows. Section 2 introduces the formal prob-

lem definition and reviews the related works. Section 3 describes our proposed hinted

sampling framework as well as the HintSVM algorithms with the simple hint selection

strategy, and reports experiment results and comparisons. Section 4 discusses TSVM

and HintTSVM with experimental justifications. Finally, we conclude in Section 5.

A short version of the paper appeared in the 2012 Asian Conference on Machine

Learning (Li et al., 2012). The paper was then enriched by discussing more related

works in Section 2, refining the hint sampling strategies along with broader experiments

in Section 3, and the novel extension of TSVM (Wang et al., 2011) to hinted sampling

for active learning in Section 4.

2 Problem Definition and Related Works
In this work, we focus on pool-based active learning for binary classification, which is

one of the most common setups in active learning (Lewis and Gale, 1994). At the initial

stage of the setup, the learning algorithm is presented with a labeled data pool and an un-

labeled data pool. We denote the labeled data pool byDl = {(x1, y1), (x2, y2), ..., (xN , yN)}
and the unlabeled data pool by Du = {x̃1, x̃2, ..., x̃M}, where the input vectors xi, x̃j ∈
Rd and the labels yi ∈ {−1, 1}. Usually, the labeled data pool Dl is relatively small or

even empty, whereas the unlabeled data poolDu is assumed to be large. Active learning

is an iterative process that contains R iterations of querying and learning. That is, an

active learning algorithm can be split into two parts: the querying algorithm Q and the

learning algorithm L.

Using the initial Dl ∪ Du, the learning algorithm L is first called to learn a decision

function f (0) : Rd → R, where the function sign(f (0)(x)) is taken for predicting the

label of any input vector x. Then, in iteration r, where r = 1, 2, ..., R, the querying

algorithm Q is allowed to select an instance x̃s ∈ Du and query its label ys from

a labeling oracle. After querying, (x̃s, ys) is added to the labeled pool Dl and x̃s is

removed from the unlabeled pool Du. The learning algorithm L then learns a decision

function f (r) from the updatedDl∪Du. The goal of active learning is to use the limited

querying and learning opportunities properly to obtain a decent list of decision functions

[f (1), f (2), ..., f (R)] that can achieve low out-of-sample (test) error rates.

As discussed in a detailed survey (Settles, 2009), there are many active learning

algorithms for binary classification. In this paper, we shall review some relevant and

representative ones. One of the most intuitive families of algorithms is called uncer-

tainty sampling (Lewis and Gale, 1994). As the name suggests, the querying algorithm

Q of uncertainty sampling queries the most uncertain x̃s ∈ Du, where the uncertainty

for each input vector x̃j ∈ Du is usually computed by re-using the decision function

f (r−1) returned from the learning algorithm L. For instance, Tong and Koller (2000)

take the support vector machine (SVM; Vapnik, 1998) as L and measure the uncer-

tainty of x̃j by the distance between x̃j and the boundary f (r−1) = 0. In other words,

the algorithm in Tong and Koller (2000) queries the x̃s that is closest to the boundary.
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Uncertainty sampling can be viewed as a greedy approach that queries instances

from the viewpoint only of the decision function f (r−1). When the decision function

is not close enough to the ideal one, however, this limited viewpoint can hinder the

performance of the active learning algorithm. Thus, Cohn et al. (1996) suggest that the

viewpoint of the unlabeled poolDu should also be included. Their idea leads to another

family of active learning algorithms, called representative sampling (Xu et al., 2003),

or density-weighted sampling (Settles, 2009). Representative sampling takes both the

uncertainty and the representativeness of each x̃j ∈ Du into account concurrently in the

querying algorithm Q, where the representativeness of x̃j with respect to Du is mea-

sured by the density of its neighborhood area. For instance, Xu et al. (2003) employ the

SVM as the learning algorithm L as do Tong and Koller (2000). They use a querying

algorithm Q that first clusters the unlabeled instances near the boundary of f (r−1) by

a K-means algorithm, and then queries one of the centers of those clusters. In other

words, the queried instance is not only uncertain for f (r−1) but also representative for

Du. Some other works estimate the representativeness with a generative model. For

instance, Nguyen and Smeulders (2004) propose a querying algorithmQ that uses mul-

tiple Gaussian distributions to cluster all input vectors xi ∈ Dl, x̃j ∈ Du and estimate

the prior probability p(x); Q then makes querying decisions based on the product of

the prior probability and some uncertainty measurement. The idea of estimating the

representativeness via clustering is a core element of many representative sampling al-

gorithms (Xu et al., 2003; Nguyen and Smeulders, 2004; Dasgupta and Hsu, 2008).

Nevertheless, clustering is a challenging task and it is not always easy to achieve satis-

factory clustering performance. When the clustering performance is not satisfactory, it

has been observed (Donmez et al., 2007; Huang et al., 2010) that representative sam-

pling algorithms could fail to achieve decent performance. In other words, the clustering

step is usually the bottleneck of representative sampling.

Huang et al. (2010) propose an improved algorithm that models representativeness

without clustering. In the algorithm, the usefulness of each x̃j , which implicitly con-

tains both uncertainty and representativeness, is estimated by using a technique in semi-

supervised learning (Hoi et al., 2008) that checks approximately all possible label as-

signments for each unlabeled x̃j ∈ Du. The querying algorithm Q proposed (Huang

et al., 2010) is based on the usefulness of each x̃j; the learning algorithm L is sim-

ply a stand-alone SVM. While the active learning algorithm (Huang et al., 2010) often

achieves promising empirical results, its bottleneck is the label-estimation step, which

is rather sophisticated and thus not always leading to satisfactory performance.

Another improvement of representative sampling is presented by Donmez et al.

(2007), who report that representative sampling is less efficient than uncertainty sam-

pling for later iterations, in which the decision function is closer to the ideal one.

To combine the best properties of uncertainty sampling and representative sampling,

Donmez et al. (2007) propose a mixed algorithm by extending representative sam-

pling (Nguyen and Smeulders, 2004). The proposed query algorithmQ (Donmez et al.,

2007) is split into two stages. The first stage performs representative sampling (Nguyen

and Smeulders, 2004) while estimating the expected error reduction. When the ex-

pected reduction is smaller than a given threshold, the querying algorithm Q switches

to uncertainty sampling for fine-tuning the decision boundary. The bottleneck of the

algorithm (Donmez et al., 2007) is still the clustering step in the first stage.

4



(a) the decision function (black) obtained from

two labeled (blue) instances

(b) when using the decision function in (a) for un-

certainty sampling, the top-left cluster keeps be-

ing ignored

Figure 1: illustration of uncertainty sampling

Another simple algorithm employs transductive SVM (TSVM; Joachims, 1999b) to

replace SVM for uncertainty sampling (Wang et al., 2011). Note that TSVM aims to

estimate the labels of unlabeled data to maximize its margin, which is similar to the

algorithm proposed by Huang et al. (2010). Therefore, using TSVM to replace SVM in

uncertainty sampling for querying can also be viewed a concrete instance of represen-

tative sampling. We will have more detailed discussions of the difference between the

two algorithms in Section 4.

3 Hinted Sampling Framework
Instead of facing the challenges of either clustering or label-estimation, we propose

to view the information in Du differently. In particular, the unlabeled instances x̃j ∈
Du are taken as hints (Abu-Mostafa, 1995) that guide the querying algorithm Q. The

idea of using hints leads to a simpler active learning algorithm with better empirical

performance.

First, we illustrate the potential drawback of uncertainty sampling with a linear

SVM classifier (Vapnik, 1998), which is applied to a two-dimensional artificial dataset.

Figure 1 shows the artificial dataset, which consists of three clusters, each of which

contains instances of a particular class. We denote one class by a red cross and the

other by a filled green circle. The labeled instances in Dl are marked with a blue square

while other instances are in Du. In Figure 1(a), the initial two labeled instances reside

in two of the clusters with different labels. The initial decision function f (0) trained

on the labeled instances (from the two clusters) is not aware of the third cluster. The

decision function f (0) then mis-classifies the instances in the third cluster, and causes

the querying algorithmQ (which is based on f (0)) to query only from the instances near

the “wrong” boundary rather than exploring the third cluster. After several iterations, as

shown in Figure 1(b), the uncertainty sampling algorithm still outputs an unsatisfactory
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(a) the hinted query boundary (dashed magenta)

that is aware of the top-left cluster

(b) when using the hinted query function in (a)

for uncertainty sampling, all three clusters are ex-

plored

Figure 2: illustration of hinted sampling

decision function that mis-classifies the entire unqueried (third) cluster.

The unsatisfactory performance of uncertainty sampling originates in its lack of

awareness of candidate unlabeled instances that should be queried. When trained on

only a few labeled instances, the resulting (linear) decision function is overly confident

about the unlabeled instances that are far from the boundary. Intuitively, uncertainty

sampling could be improved if the querying algorithm Q were aware of and less confi-

dent about the unqueried regions. Both clustering (Nguyen and Smeulders, 2004) and

label-estimation (Huang et al., 2010) are based on this intuition, but they explore the

unlabeled regions in a rather sophisticated way.

We propose a simpler alternative as follows. Note that the uncertainty sampling

algorithm measures the uncertainty by the distance between instances and the boundary.

In order to make Q less confident about the unlabeled instances, we seek a “query

boundary” that not only classifies the labeled instances correctly but also passes through

the unqueried regions, denoted by the dashed magenta line in Figure 2(a). Then, in

the later iterations, the query algorithm Q, using the query boundary, would be less

confident about the unqueried regions, and thus be able to explore them. The instances

in the unqueried regions give hints as to where the query boundary should pass. Using

these hints about the unqueried regions, the uncertainty sampling algorithm can take

both uncertainty and the underlying distribution into account concurrently, and achieve

better performance, as shown in Figure 2(b).

Based on this idea, we propose a novel active learning framework, hinted sampling.

The learning algorithm L in hinted sampling is similar to that in uncertainty sampling,

but the querying algorithm is different. In particular, the querying algorithm Q is pro-

vided with some unlabeled instances, called the hint pool Dh ⊆ Du. When properly

using the information in the hint pool Dh, both uncertainty and representativeness can

be considered concurrently to obtain a query boundary that assists Q in making query

decisions. We sketch the framework of Active Learning under Hinted Sampling (ALHS)
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in Algorithm 1.

Algorithm 1 Active Learning under Hinted Sampling (ALHS) framework

Input: the number of rounds R; a labeled pool Dl; an unlabeled pool Dh; parameters

θQ for querying algorithm and θL for learning algorithm

Output: decision functions f (1), ..., f (R)

For r ← 1 to R do

Select Dh from Du

h← Q(θQ,Dh ∪ Dl)

(x̃s, ys)← Query(h,Du)

Du ← Du \ x̃s; Dl ← Dl ∪ (x̃s, ys)

f (r) ← L(θL,Dl)

End

Next, we design a concrete active learning algorithm of hinted sampling based on

SVM, which is also used as the core of many state-of-the-art algorithms (Tong and

Koller, 2000; Xu et al., 2003; Huang et al., 2010), as both L and Q. Before illustrating

the complete algorithm, we show how SVM can be appropriately extended to use the

information in Dh for Q.

3.1 HintSVM
The extended SVM is called HintSVM, which takes hints into account. The goal of

HintSVM is to locate a query boundary which does well on two objectives: (1) clas-

sifying labeled instances in Dl, and (2) being close to the unlabeled instances in hint

pool Dh. Note that the two objectives are different from the usual semi-supervised

SVM (Bennett and Demiriz, 1998) such as transductive SVM (Joachims, 1999b), which

pushes the unlabeled instances away from the decision boundary.

The first objective matches an ordinary support vector classification (SVC) prob-

lem. To deal with the second objective, we consider ε-support vector regression (ε-
SVR) and set regression targets to 0 for all instances in Dh, which means that instances

in Dh should be close to the query boundary. By combining the objective functions of

SVC and ε-SVR together, HintSVM solves the following convex optimization problem,
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which simultaneously achieves the two objectives.

min
w,b,ξ,ξ̃,ξ̃∗

1

2
wTw + Cl

|Dl|∑
i=1

ξi + Ch

|Dh|∑
j=1

(
ξ̃j + ξ̃∗j

)

subject to

yi(w
Txi + b) ≥ 1− ξi for (xi, yi) ∈ Dl,

wT x̃j + b ≤ ε+ ξ̃j for xj ∈ Dh,

−(wT x̃j + b) ≤ ε+ ξ̃∗j for xj ∈ Dh,

ξi ≥ 0 for (xi, yi) ∈ Dl,

ξ̃j, ξ̃
∗
j ≥ 0 for xj ∈ Dh.

(1)

Here ε is the margin of tolerance for being close to the boundary, and Cl, Ch are the

weights of the classification errors (onDl) and hint errors (onDh), respectively. Similar

to the usual SVC and ε-SVR, the convex optimization problem can be transformed to the

dual form to allow using the kernel trick. Define x̂i = xi, x̂|Dl|+j = x̂|Dl|+|Dh|+j = x̃j ,

ŷi = yi, ŷ|Dl|+j = 1, and ŷ|Dl|+|Dh|+j = −1 for 1 ≤ i ≤ |Dl| and 1 ≤ j ≤ |Dh|. The

dual problem of (1) can be written as follows:

min
α

1
2
αTQα + pTα

subject to ŷTα = 0,

0 ≤ αi ≤ Cl for i = 1, 2, · · · , |Dl|,
0 ≤ αj ≤ Ch for j = |Dl|+ 1, · · · , |Dl|+ 2|Dh|,

where pi = −1, pj = ε, and Qab = ŷaŷbx̂
T
a x̂b. The derived dual form can be easily

solved by any state-of-the-art quadratic programming solver, such as the one imple-

mented in LIBSVM (Chang and Lin, 2011).

3.2 Hint Selection Strategy
A naı̈ve strategy for selecting a proper hint pool Dh ⊆ Du is to directly let Dh = Du,

which retains all the information about the unlabeled data. However, given that the

size of Du is usually much larger than the size of Dl, this strategy may cause the hints

to overwhelm HintSVM, which leads to performance and computational concerns. In

our earlier version of this work (Li et al., 2012), a specifically designed selection strat-

egy that drops hints with radial functions have been studied. We have conducted some

broader studies that suggest the sufficiency of using a simpler uniform sampling strat-

egy. Next, we will use the strategy to demonstrate the essence, validity and usefulness

of hint information.

3.3 Hint Influence Control
Settles (2009) shows that uncertainty sampling can outperform uniform sampling when

enough examples have been queried. Thus, after querying more examples, there can

be advantages by changing the focus of the active learning approach to “refine” the

boundary by uncertainty sampling. (Donmez et al., 2007) tries to dynamically balance

the representative sampling and uncertainty sampling. Our earlier work (Li et al., 2012)
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exploits two strategies, hint dropping and hint termination, to achieve this goal. Similar

ideas have also been widely used in the bandit problem (Langford and Zhang, 2007) to

balance exploration and exploitation. Here we take a simple alternative by multiplying

the parameter Ch by a ratio δ each iteration, where 0 < δ < 1, to gradually change our

focus to uncertainty sampling. That is, in iteration r, the cost parameter C
(r)
h of hint

instances is C
(1)
h × δr−1. After enough many iterations, C

(r)
h will be closed to 0, which

essentially transforms hinted sampling to typical uncertainty sampling.

3.4 Hinted Sampling with HintSVM
Next, we incorporate the proposed ALHS with the derived HintSVM formulation to

make a novel active learning algorithm, ALHS-SVM.

The querying algorithm Q of ALHS-SVM selects unlabeled instances from the un-

labeled pool Du as the hint pool Dh and trains HintSVM from Dl and Dh to obtain the

query boundary for uncertainty sampling. The use of both Dl and Dh combines uncer-

tainty and representativeness. The learning algorithm L of ALHS-SVM, on the other

hand, trains a stand-alone SVM from Dl to get a decision function f (r), just like L in

uncertainty sampling (Tong and Koller, 2000). The full ALHS-SVM algorithm is listed

in Algorithm 2.

Algorithm 2 The ALHS-SVM algorithm

Input: the number of rounds R; a labeled pool Dl; an unlabeled pool Du; parameters

for HintSVM and SVM; ratio δ
Output: decision functions f (1), ..., f (R)

For r ← 1 to R do

Uniformly select Dh from Du

h← TrainHintSVM(Ch, Cl, ε,Dh,Dl)

(x̃s, ys)← Query(h,Du)

Du ← Du \ x̃s; Dl ← Dl ∪ (x̃s, ys)

f (r) ← Train SVM(C,Dl)

Ch ← Ch × δ

End

Uncertainty sampling with SVM is a special case of ALHS-SVM when always set-

ting Ch = 0. In other words, ALHS can be viewed as a generalization of uncertainty

sampling that considers representativeness through the hints. The simple use of hints

avoids the challenges in clustering or label-estimation steps.
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Table 1: Comparison on accuracy (mean ± se) after querying 5% of unlabeled pool

Algorithms (%), the highest accuracy for each dataset is in boldface

data UNCERTAIN REPRESENT QUIRE DUAL TSVM-SVM ALHS-SVM

australian 82.188± 1.571 83.739± 0.548 82.319± 1.126 81.304± 0.647 78.116± 1.490 83.362± 0.439
diabetes 63.229± 2.767 66.758± 0.505 66.771± 0.960 65.143± 0.381 67.148± 0.570 68.438± 0.709
german 69.060± 0.497 67.240± 1.099 68.750± 0.605 69.620± 1.323 68.160± 0.382 69.330± 0.373
letterMvsN 89.632± 1.103 83.463± 1.348 81.372± 1.693 83.437± 1.211 80.051± 1.165 91.112± 0.444
letterV vsY 79.245± 1.176 63.523± 2.335 68.516± 2.132 76.213± 1.549 71.258± 0.973 79.300± 0.695
segment 95.437± 0.367 94.390± 0.482 96.074± 0.224 86.078± 2.834 79.160± 0.716 96.095± 0.204
splice 74.430± 0.606 69.117± 1.452 70.340± 0.942 56.969± 0.576 72.847± 0.332 76.334± 0.315
wdbc 93.842± 3.137 95.616± 0.711 96.613± 0.230 96.056± 0.250 95.777± 0.264 97.020± 0.123

3.5 Experimental Studies of ALHS-SVM
Next, we compared the proposed ALHS-SVM algorithm with the following active

learning algorithms: (1) UNCERTAIN (Tong and Koller, 2000): uncertainty sampling

with SVM, (2) REPRESENT (Xu et al., 2003): representative sampling with SVM and

clustering, (3) DUAL (Donmez et al., 2007): mixture of uncertainty and representative

sampling, (4) QUIRE (Huang et al., 2010): representative sampling with label esti-

mation based on the min-max view, We also list the results of another related active

learning algorithm, TSVM-SVM (Wang et al., 2011), which conducts representative

sampling with transductive SVM, and will compare it with ALHS-SVM in detail in

Section 4.

We conducted experiments on eight UCI benchmarks (Frank and Asuncion, 2010),

which are australian, diabetes, german, splice, wdbc, letetrMvsN , letterV vsY
(Donmez et al., 2007; Huang et al., 2010) and segment-binary (Ratsch et al., 2001;

Donmez et al., 2007) as chosen by other related works. For each dataset, we randomly

divided it into two parts with equal size. One part was treated as the unlabeled pool Du

for active learning algorithms. The other part was reserved as the test set. Before

querying, we randomly select one positive instance and one negative instance to form

the labeled pool Dl. For each dataset, we ran the algorithms 20 times with different

random splits.

Due to the difficulty of locating the best parameters for each active learning algo-

rithms in practice, we chose to compare all algorithms on fixed parameters. In the

experiments, We adapt the implementation in SVM-light (Joachims, 1999a) for TSVM

and LIBSVM (Chang and Lin, 2011) for other SVM-based algorithms with the RBF

kernel and the default parameters, except for C = 5. Correspondingly, the parameter λ
in the works of Donmez et al. (2007) and Huang et al. (2010) was set to λ = 1

C
. These

parameters ensure that all four algorithms behave in a stable manner. For ALHS-SVM,

we fixed δ = 0.5 and uniformly sample 10% data from Du as Dh without any further

tuning for each dataset. For other algorithms, we take the parameters in the original

papers.

Figure 3 presents the accuracy of different active learning algorithms along with the

number of rounds R, which equals the number of queried instances. Tables 1 and 2 list

the mean and standard error of accuracy when R = |Du| × 5% and R = |Du| × 10%,

respectively. The highest mean accuracy is shown in boldface for each dataset. We

also conducted the t-test at 95% significance level (Melville and Mooney, 2004; Guo
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Figure 3: Comparison on different datasets

Table 2: Comparison on accuracy (mean ± se) after querying 10% of unlabeled pool

Algorithms (%), the highest accuracy for each dataset is in boldface

data UNCERTAIN REPRESENT QUIRE DUAL TSVM-SVM ALHS

australian 83.884± 0.460 84.884± 0.367 84.870± 0.455 81.174± 0.798 82.725± 0.628 84.4391± 0.259
diabetes 66.706± 2.632 66.484± 1.223 67.500± 1.337 65.143± 0.381 67.878± 0.609 71.758± 0.618
german 71.410± 0.488 67.150± 0.773 70.250± 0.560 69.760± 0.299 70.110± 0.342 71.030± 0.257
letterMvsN 95.369± 0.315 92.433± 0.777 95.114± 0.486 86.893± 0.870 84.625± 0.879 95.578± 0.214
letterV vsY 88.213± 0.635 73.806± 1.551 84.723± 0.891 80.123± 1.359 76.645± 0.677 88.561± 0.431
segment 96.528± 0.143 95.684± 0.155 96.658± 0.110 89.519± 1.760 92.420± 0.217 96.445± 0.100
splice 79.931± 0.274 76.274± 0.895 78.560± 0.648 58.947± 0.853 79.503± 0.197 80.750± 0.143
wdbc 97.155± 0.141 96.818± 0.191 96.862± 0.206 95.748± 0.247 96.554± 0.219 97.170± 0.127

and Greiner, 2007; Donmez et al., 2007). The t-test results are given in Table 3, which

summarizes the number of datasets in which ALHS-SVM performs significantly better

(or worse) than the other algorithms.

Comparison between ALHS-SVM and Uncertainty Sampling For some datasets,

such as wdbc and diabetes in Figure 3(g) and 3(c), the result for UNCERTAIN is un-

satisfactory. This unsatisfactory performance is possibly caused by the lack of aware-

ness of unlabeled instances, which echoes our illustration in Figure 1. Note that we

have considered some more aggressive querying criteria (Tong and Koller, 2000) than

UNCERTAIN on the side, and have observed that those criteria are designed for hard-

margin SVM and hence can be worse than UNCERTAIN with soft-margin SVM in our

experiments. Thus, we excluded them from the tables. In these two cases, ALHS-SVM

surely improves on UNCERTAIN with much lower standard error by using the hint

information to avoid the worse local optimal. The results demonstrate the validity of

the proposed ALHS framework. For other datasets which UNCERTAIN performs well

on them, ALHS-SVM is still competitive and can sometimes reach even better perfor-

mance. For instance, in splice, ALHS-SVM results in significantly higher accuracy

after 30 queries. The observation further justifies that the hint information can be useful

in boosting the performance of UNCERTAIN.
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Table 3: ALHS-SVM versus the other algorithm based on t-test at 95% significance

level

Algorithms (win/tie/loss)

Percentage of queries UNCERTAIN REPRESENT QUIRE DUAL TSVM-SVM

5% 1/7/0 6/2/0 5/3/0 4/4/0 6/2/0

10% 3/5/0 7/1/0 6/2/0 5/3/0 8/0/0

Comparison between ALHS-SVM and Representative Sampling We will leave

the detailed comparison to TSVM-SVM in the next section. For DUAL, CLUSTER

and QUIRE, we see that ALHS-SVM is only worse than DUAL on german and let-
ter M vs N when ALHS-SVM has not queried enough many instances. For all other

datasets and situations, ALHS-SVM generally results in better performance than all the

other three algorithms. For instance, in Figure 3(h), since splice is a larger and higher

dimensional dataset, representative sampling algorithms that perform clustering (REP-

RESENT, DUAL) or label estimation (QUIRE) fail to reach a decent performance. We

attribute the results to the fact that it is usually non-trivial to perform distribution esti-

mation, clustering or label estimations in a high dimensional space. On the other hand,

ALHS uses the hint information without aggressive assumptions, and can thus result in

better and stabler performance.

In summary, in Figure 3 shows that ALHS-SVM can achieve comparable results

to those of the best representative sampling and uncertainty sampling algorithms. As

shown in Tables 1 and 2, after querying 5% of the unlabeled instances (Table 1), ALHS-

SVM achieves the highest mean accuracy in 6 out of 8 datasets; after querying 10% of

unlabeled instances (Table 2), ALHS-SVM achieves the highest mean accuracy in 5 out

of 8 datasets. Table 3 further confirms that ALHS-SVM usually outperforms each of

the other algorithms at the 95% significance level.

4 Transductive SVM versus HintSVM
As discussed, transductive SVM (TSVM; Joachims, 1999b) has been considered for ac-

tive learning (Wang et al., 2011) as a representative sampling approach. TSVM arises

from semi-supervised learning and has been demonstrated to be useful for many ap-

plications, such text mining (Joachims, 1999b). TSVM aims to maximize its margin

between the labeled data and the unlabeled data by assigning suitable labels to the un-
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labeled data. The formulation is as follows.

min
w,b,ξ,ξ̄,ȳ

1

2
wTw + Cl

|Dl|∑
i=1

ξi + Cu

|Du|∑
j=1

ξj

subject to

yi(w
Txi + b) ≥ 1− ξi for (xi, yi) ∈ Dl,

ȳj(w
Txj + b) ≥ 1− ξj for xi ∈ Du,

ξi ≥ 0 for (xi, yi) ∈ Dl,

ξj ≥ 0 for xj ∈ Du,

ȳj ∈ {+1,−1} for xj ∈ Du.

(2)

Existing approach (Wang et al., 2011) uses TSVM for querying, which can be viewed

as a form of representative sampling that locates the querying boundary by estimating

the labels of unlabeled instances.

Comparing formulation (2) of TSVM and formulation (1) of HintSVM as described

in Section 3.1, we see that the formulations share some similarities, but focus on very

different objective functions. In this section, we study the validity and effectiveness of

these two formulations for active learning as querying and/or learning algorithms.

4.1 Comparison between HintSVM and TSVM
Comparison When Using SVM for Learning. We first study the case when using

HintSVM and TSVM as the querying algorithm while taking the stand-alone SVM as

the learning algorithm. The two algorithms are denoted as ALHS-SVM and TSVM-

SVM, respectively. For other experimental settings, we follow the same setup as de-

scribed in Section 3.5.

Figure 4 presents the accuracy of TSVM-SVM and ALHS-SVM as well as the base-

line UNCERTAIN algorithm with SVM. The mean and standard error of accuracy at

different rounds of querying are readily listed in Tables 1 and 2. Clearly, TSVM-SVM

performs generally worse than ALHS-SVM across all datasets. The results again jus-

tify the usefulness of the proposed ALHS framework. We discuss the performance

difference as follows.

In formulation (2), TSVM-SVM aims to estimate the possible labels on the unla-

beled data, which is similar to QUIRE Huang et al. (2010). Nevertheless, in QUIRE,

the estimation is used for exploring a better query, but TSVM-SVM takes the estimation

with a goal of a better classifier. Thus, TSVM-SVM pushes the unlabeled data away

from the boundary for better classification ability. Note that ALHS-SVM, on the other

hand, aims at a boundary close to parts of unlabeled data (hints) to explore like QUIRE.

In the earlier iterations of active learning, exploration rather than pushing the unlabeled

data away (as if they are certain) can be important. Thus, TSVM-SVM can be inferior

to ALHS-SVM.

On the other hand, in the latter iterations of active learning, ALHS-SVM is simi-

lar to the baseline UNCERTAIN approach, which is known to perform decently when

the learning algorithm is SVM. Nevertheless, because the boundaries obtained from

TSVM and SVM can be quite different, the instances queried by TSVM may not be

“uncertain” for learning with SVM. This explanation matches one interesting observa-

tion that TSVM-SVM is also worse than the baseline UNCERTAIN algorithm in many
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Figure 4: Comparison between different querying algorithms by using SVM for learn-

ing on different datasets

datasets such australian and letter I vs J. Thus, ALHS-SVM also holds an advantage

over TSVM-SVM in the latter iterations.

Comparison When Using TSVM for Learning. The discussion above shows that

the discrepancy between TSVM and SVM may be part of the reason that TSVM-SVM

is inferior for active learning. What if we take TSVM for learning instead? Next, we

couple TSVM for learning with two querying approaches: HintSVM or TSVM. The two

algorithms are named HintSVM-TSVM and TSVM-TSVM, and the results are shown

in Figure 5.

According to Figure 5, HintSVM does not always achieve competitive performance

over TSVM with using TSVM as the learning algorithm. The results verify our earlier

claim that the discrepancy between TSVM and SVM leads to inferior performance for

TSVM-SVM. Compared with TSVM, HintSVM benefits the querying stage for explo-

ration and results in significantly better performance in some datasets, such as letter M
vs N, letter I vs J and splice. The exploration makes the learning boundary converge to

better local optimal one within a few queries.

Nevertheless, we observe that HintSVM-TSVM may not result in satisfactory per-

formance in other datasets, such as german and wdbc. We address this problem to the

same reason that TSVM-SVM is inferior: HintSVM, which is based on a stand-along

SVM, is very different from TSVM. Thus, uncertain instances queried by HintSVM

may not be uncertain to the learning TSVM. Thus, HintSVM-TSVM is yet another

combination where the discrepancy between the querying and the learning parts results

in unsatisfactory performance.

4.2 Hint Transductive SVM
The results in Section 4.1, show that considering the learning algorithm is an important

issue when designing the querying algorithm to avoid discrepancy. Similar idea has also

been studied in other active learning works (Donmez et al., 2007). Thus, ALHS-TSVM
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Figure 5: Comparison between TSVM and HintSVM for querying by using TSVM for

learning on different datasets

results in inferior performance.

One interesting question is then whether ALHS can be used when employing TSVM

as the learning algorithm. Next, we demonstrate one such possibility. We combine

formulation (2) of TSVM and formulation (1) to an extension of TSVM with hint in-

formation, which is called Hint Transductive SVM (HintTSVM). HintTSVM can then

be used for hinted sampling with TSVM, and expected to be a better match of ALHS

when employing TSVM as the learning algorithm. The formulation of HintTSVM is as

follows:

min
w,b,ξ,ξ̄,ȳ

1

2
wTw + Cl

|Dl|∑
i=1

ξi + Cu

|D′
u|∑

j=1

ξj + Ch

|Dh|∑
j=1

(
ξ̃j + ξ̃∗j

)

subject to

yi(w
Txi + b) ≥ 1− ξi for (xi, yi) ∈ Dl,

ȳj(w
Txj + b) ≥ 1− ξj for xi ∈ D′

u,

wT x̃j + b ≤ ε+ ξ̃j for xj ∈ Dh,

−(wT x̃j + b) ≤ ε+ ξ̃∗j for xj ∈ Dh,

ξi ≥ 0 for (xi, yi) ∈ Dl,

ξj ≥ 0 for xj ∈ D′
u,

ξ̃j, ξ̃
∗
j ≥ 0 for xj ∈ Dh,

ȳj ∈ {+1,−1} for xj ∈ D′
u.

(3)

where Du = D′
u ∪ Dh.

Different from HintSVM, it is difficult to solve HintTSVM efficiently since the

TSVM part of the formulation is NP-hard to solve. Therefore, we consider a sim-

ple approximation by splitting the training of HintTSVM into two stages. In the first

stage, we only consider training the TSVM part on Dl and D′
u by any existing algo-

rithm (Joachims, 1999b). In the second stage, we use the inferred labels and cost pa-

rameters Ch from the first stage to train a HintSVM as described in Section 3.1. We

call the variant of ALHS with HintTSVM as ALHS-TSVM, and list the details in Al-

gorithm 3.
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Algorithm 3 The ALHS-TSVM algorithm

Input: the number of rounds R; a labeled pool Dl; an unlabeled pool Dh; parameters

for HintTSVM and TSVM; ratio δ
Output: decision functions f (1), ..., f (R)

For r ← 1 to R do

Uniformly select Dh from Du

D′
u ← Du\Dh

h← TrainHintTSVM(Ch, Cu, Cl, ε,Dh,D′
u,Dl)

(x̃s, ys)← Query(h,Du)

Du ← Du \ x̃s; Dl ← Dl ∪ (x̃s, ys)

f (r) ← TrainTSVM(Cl, Cu,Dl,Du)

Ch ← Ch × δ

End

Table 4: ALHS-TSVM versus the other algorithm based on t-test at 95% significance

level

Algorithms (win/tie/loss)

Percentage of queries TSVM-TSVM HintSVM-TSVM

5% 2/6/0 4/1/3

10% 3/5/0 5/1/3

4.3 Experimental Studies of ALHS-TSVM
We follow the same experiment setup as previous experiments and report the results in

Figure 6 and Table 4.

From the results, we see that the only two datasets that ALHS-TSVM do not perform

the strongest are letter I vs J and letter M vs N. On those datasets, HintSVM-TSVM

reaches the best performance. We address this to the difficulty of properly training

HintTSVM in ALHS-TSVM, and the simple HintSVM results in more stable perfor-

mance.

On the other hand, for the datasets that HintSVM-TSVM performs worse than the

TSVM-TSVM, such as german and wdbc, ALHS-TSVM results in better or competi-

tive performance than both of them. The results demonstrate the validity of employing

HintTSVM in ALHS-TSVM to explore unknown region of the data to TSVM and re-

solve the potential drawback of HintSVM-SVM as discussed in Section 4.1.
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Figure 6: Comparison between TSVM and HintSVM for querying by using TSVM for

learning on different datasets

5 Conclusion
We propose a new framework of active learning, hinted sampling, which exploits the

unlabeled instances as hints. Hinted sampling can take both uncertainty and represen-

tativeness into account concurrently in a more natural and simpler way. We design a

novel active learning algorithm ALHS within the framework, and couple the algorithm

with a promising hint selection strategy. Because ALHS models the representativeness

by hints, it avoids the potential problems of other more sophisticated approaches that

are employed by other representative sampling algorithms. Hence, ALHS results in a

significantly better and more stable performance than other state-of-the-art algorithms,

and can be used to immediately improve SVM-based uncertainty sampling and TSVM-

based representative sampling.

Due to the simplicity and effectiveness of hinted sampling, it is worth studying more

about this framework. An intensive research direction is to couple hinted sampling with

other classification algorithms, and investigate deeper on the hint selection strategies.

While we use SVM in ALHS, this framework could be generalized to other classi-

fication algorithms. In the future, we plan to investigate more general hint selection

strategies and extend hinted sampling from binary classification to other classification

problem.

References
Abu-Mostafa, Y. S. (1995). Hints. Neural Computation, 4:639–671.

Bennett, K. P. and Demiriz, A. (1998). Semi-supervised support vector machines. In

Advances in Neural Information Processing Systems 11, pages 368–374.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, pages 27:1–27:27.

21



Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active learning with statistical

models. Journal of Artificial Intelligence Research, 4:129–145.

Dasgupta, S. and Hsu, D. (2008). Hierarchical sampling for active learning. In Pro-
ceedings of the 25th International Conference on Machine learning, pages 208–215.

Donmez, P., Carbonell, J. G., and Bennett, P. N. (2007). Dual strategy active learning. In

Proceedings of the 18th European Conference on Machine Learning, pages 116–127.

Frank, A. and Asuncion, A. (2010). UCI machine learning repository.

Guo, Y. and Greiner, R. (2007). Optimistic active learning using mutual information.

In Proceedings of the 20th International Joint Conference on Artificial Intelligence,

pages 823–829.

Hoi, S. C. H., Jin, R., Zhu, J., and Lyu, M. R. (2008). Semi-supervised SVM batch

mode active learning for image retrieval. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 1–7.

Huang, S.-J., Jin, R., and Zhou, Z.-H. (2010). Active learning by querying informative

and representative examples. In Advances in Neural Information Processing Systems
23, pages 892–900.

Joachims, T. (1999a). Advances in kernel methods. chapter Making large-scale support

vector machine learning practical.

Joachims, T. (1999b). Transductive inference for text classification using support vector

machines. In Proceedings of the Sixteenth International Conference on Machine
Learning.

Langford, J. and Zhang, T. (2007). The epoch-greedy algorithm for contextual multi-

armed bandits. In Advances in Neural Information Processing Systems 20.

Lewis, D. D. and Gale, W. A. (1994). A sequential algorithm for training text classi-

fiers. In Proceedings of the 17th ACM International Conference on Research and
Development in Information Retrieval, pages 3–12.

Li, C.-L., Ferng, C.-S., and Lin, H.-T. (2012). Active learning with hinted support

vector machine. In Proceedings of the forth Asian Conference on Machine Learning.

Melville, P. and Mooney, R. J. (2004). Diverse ensembles for active learning. In Pro-
ceedings of the 21st International Conference on Machine Learning, pages 584–591.

Nguyen, H. T. and Smeulders, A. (2004). Active learning using pre-clustering. In

Proceedings of the 21st International Conference on Machine Learning, pages 623–

630.

Ratsch, G., Onoda, T., and Müller, K. R. (2001). Soft margins for AdaBoost. Machine
Learning, 2:27:1–27:27.

22



Settles, B. (2009). Active learning literature survey. Technical report, University of

Wisconsin–Madison.

Tong, S. and Koller, D. (2000). Support vector machine active learning with applica-

tions to text classification. In Proceedings of the 17th International Conference on
Machine Learning, pages 999–1006.

Vapnik, V. (1998). Statistical learning theory. Wiley.

Wang, Z., Yan, S., and Zhang, C. (2011). Active learning with adaptive regularization.

Pattern Recogn.

Xu, Z., Yu, K., Tresp, V., Xu, X., and Wang, J. (2003). Representative sampling for text

classification using support vector machines. In Proceedings of the 25th European
Conference on Information Retrieval Research, pages 393–407.

23


