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About Me
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Academic Competition

Working

• NTU CSIE BS/MS (2012/2013)
• Advisor: Prof. Hsuan-Tien Lin  

• CMU MLD PhD (2014-)
• Advisor: Prof. Jeff Schneider 

                       Prof. Barnabás Póczos

• KDD Cup 2011 Champions  
KDD Cup 2013 Champions

• With  Prof. Chih-Jen Lin  
         Prof. Hsuan-Tien Lin 
         Prof. Shou-De Lin  
         Many students

(2012 intern) (2015 intern)



What is Machine Learning?
• What is Machine Learning? 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Learning Prediction
Existing Data

Machine (Algorithm)

Model

New Data

Model

Prediction

Data: Several length-d vectors



Data? Algorithm?
• In academic 

• Assume we are given good enough data (in d-dimensional 
of course     ) 

• Focus on designing better algorithms  
Sometimes complicated algorithms imply publications   

• In practice 

• Where is your good enough data? 

• Or, how to transform your data into a d-dimensional one?
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From Zero to One: 
Create your features by your observations
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An Apple
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How to describe this picture?



More Fruits
• Method I: Use size of picture 

• Method II: Use RGB average  

• Many more powerful features  
developed in computer vision
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(640, 580) (640, 580)

(219, 156, 140) (243, 194, 113) (216, 156, 155)



Case Study (KDD Cup 2013)
• Determine whether a paper is written by a given 

author
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We are given raw text  
of these

Data: https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge


NTU Approaches
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Feature Engineering

Several Algorithms

Combining Different Models

Pipeline Feature Engineering

Observation

Encode into Feature

Result



First observation: 
Authors Information

• Are these my (Chun-Liang Li) papers?  (Easy! check author names) 
  1. Chun-Liang Li and Hsuan-Tien Lin. Condensed filter tree for cost-sensitive multi-label                 
       classification. 
   2. Yao-Nan Chen and Hsuan-Tien Lin. Feature-aware label space dimension reduction for  
       multi-label classification. 

• Encode by name similarities (e.g., how many characters are the same) 

• Are Li, Chun-Liang and Chun-Liang Li the same? 

• Yes! Eastern and Western order 

• How about Li Chun-Liang?  (Calculate the similarity of the reverse order) 

• Also take co-authors into account 

• 29 features in total
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Second Observation: 
Affiliations

• Are Dr. Chi-Jen Lu and Prof. Chih-Jen Lin the same? 

• Similar name: Chi-Jen Lu v.s. Chih-Jen Lin

• Shared co-author (me!) 

• Take affiliations into account!  

• Academia Sinica v.s. National Taiwan University 

• 13 features in total
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Last of KDD Cup 2013
• Many other features, including 

• Can you live for more than 100 years? At least I 
think I can’t do research after 100 years 

• More advanced: social network features
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Summary
The 97 features designed by students won the competition



Furthermore
• If I can access the content, can I do better?   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Author: Robert Galbraith

Who is Robert Galbraith?

“I thought it was by a very  
mature writer, and not a  
first-timer.” — Peter James

Definitely



Writing Style?
• “I was testing things like word length, sentence 

length, paragraph length, frequency of particular 
words and the pattern of punctuation”  
                           — Peter Millican (University of Oxford)
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1 2
3 4

5
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Game Changing Point: 
Deep Learning



Common Type of Data
• Image  
 
 

• Text 
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Representation Learning
• Deep Learning as learning hidden representations  
 
 
 
 

• An active research topic in academia and industry
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Use last layer to extract features (Krizhevsky et al., 2012)

(Check Prof. Lee’s talk and go to deep learning session later    )

Raw data



Use Pre-trained Network
• Yon don’t need to train a network by yourself 

• Use existing pre-trained network to extract features 

• AlexNet 
• VGG 
• Word2Vector
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Result
Simply using deep learning features achieves state-of-the-art 

performance in many applications



Successful Example
• The PASCAL Visual Object Classes Challenge
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Deep learning result 
(Girshick et al. 2014)

HoG feature Slow progress on feature engineering and  
algorithms before deep learning
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Curse of Dimensionality:
Feature Selection and Dimension Reduction



The more, the better?
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Practice

If we have 1,000,000 data 
with 100,000 dimensions, 
how much memory do we 
need? 
 
Ans: 

Theory
Without any assumption, 
you need           data to 
achieve    error for d- 
dimensional data

106 ⇥ 105 ⇥ 8
= 8⇥ 1011 (B)
= 800 (GB)

✏
O(

1

✏d
)

Noisy Feature

Is every feature useful? 
Redundancy?



Feature Selection
• Select import features  

• Reduce dimensions 

• Explainable Results

22

Commonly Used Tools
• LASSO (Sparse Constraint)
• Random Forests 
• Many others



KDD Cup Again
• In KDD Cup 2013, we actually generated more 

than 200 features (some secrets you won’t see in the paper     ) 

• Use random forests to select only 97 features, 
since many features are unimportant and even 
harmful, but why?
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Non-useful Features
• Duplicated features  

• Example I: Country (Taiwan) v.s. Coordinates (121, 23.5) 

• Example II: Date of birth (1990) v.s. Age (26) 

• Noisy features 

• Noisy information (something wrong in your data) 

• Missing values (something missing in your data) 

• What if we still have too many features?
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Dimension Reduction
• Let’s visualize the data (a perfect example)  
 
 

• Non-perfect example in practice
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Commonly Used Tools
• Principal Component Analysis (PCA)
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PCA — Intuition 
• Let’s apply PCA on these faces  

(raw pixels) and visualize the  
coordinates  
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PCA — Intuition (cont.)
• We can use very few base faces to approximate 

(describe) the original faces
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http://comp435p.tk/
(Sirovich and Kirby, Low-dimensional procedure for the characterization of human faces)

1 2 3 4 5 6 7 8 9



PCA — Case Study
• CIFAR-10 image classification  

with raw pixels as features and  
using approximated kernel SVM 
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Dimensions Accuracy Time

3072 (all) 63.1% ~2 Hrs
100 (PCA) 59.8% 250 s

(Li and Pòczos, Utilize Old Coordinates: Faster Doubly Stochastic Gradients for  
Kernel Methods, UAI 2016)

Trade-off between information, space and time



PCA in Practice
• Practical concern:   

• Time complexity: 

• Space complexity:            

• Remark: Use fast approximation for large-scale problem (e.g., 
>100k dimensions)

1. PCA with random projection (implemented in scikit-learn)  
(Halko et al., Finding Structure with Randomness, 2011) 

2. Stochastic algorithms (easy to implement from scratch) 
(Li et al., Rivalry of Two Families of Algorithms for Memory-Restricted Streaming PCA, 
AISTATS 2016)
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O(Nd2)

O(d2)

Small Problem
PCA takes <10 seconds for 
CIFAR-10 dataset (d=3072) by 
using 12 cores (E5-2620)



Conclusion
• Observe the data and encode them into meaningful features  
 
 
 

• Deep learning is a powerful tool to use  

• Reduce number of features if necessary  

• Reduce non-useful features 

• Computational concern
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Existing Data Machine (Algorithm)

Features (Simple) AlgorithmExisting Data

Beginning:

Now:
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Thanks! 
Any Question?
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