~eature Engineering In

Machine Learning

Chun-Liang Li (Z=2E)

chunlial@cs.cmu.edu

2016/0717@eEE&ER P EF =

MACHINE LEARNING

EEEEEEEEEE

Carnegie Mellon University


mailto:chunlial@cs.cmu.edu

About Me

- NTU CSIE BS/MS (2012/2013) - KDD Cup 2011 Champions
e Advisor: Prot. Hsuan-Tien Lin KDD Cup 2013 Champions
« With Prof. Chih-den Lin
- CMU MLD PhD (2014-) Prof. Hsuan-Tien Lin
« Advisor: Prof. Jeff Schneider Prof. Shou-De Lin
Prof. Barnabas P6czos Many students

Carnadie (2012 intern) (2015 intern)
AC - ‘
Mellon M L

Universi ty 5 rrrvrp——

EEEEEEEEEE




What is Machine Learning®

* What is Machine Learning?

( Existing Data ) ( New Data )
o) (o
Machine (Algorithm) Model
L 4 \ 4

( Model ) ( Prediction )

Data: Several length-d vectors
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Data”? Algorithm?

e |Nn academic

 Assume we are given good enough data (in d-dimensional
of course ©))

 Focus on designing better algorithms

®
* |n practice

 Where is your good enough data”

* Or, how to transform your data into a d-dimensional one”?
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From Zero to One:

Create your features by your observations
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How to describe this picture?
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More Frults

 Method I: Use size of picture

-l

K

(640, 580) (640, 580)

(219, 156, 140) (243, 194, 113) (216, 156, 155)

* Method II: Use RGB average @

* Many more powerful features
developed in computer vision
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Case Study (KDD Cup 2013

* Determine whether a paper is written by a given
author

Condensed Filter Tree for Cost-Sensitive Multi-Label Classification
§ “ ~~| = comouser 5 - [IEND 2014, International Conference on Machine Learning

Sewoh P——— Chun-Liang Li (National Taiwan University), Hsuan-Tien Lin (National Taiwan University)
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National Taiwan University
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Fields of Study: computer
science, data deduplication,

machine learning, feature, H
computer security ‘We are given raw text

of these
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Co-author Affiliations: National
Taiwan University


https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

N TU Approaches

Feature Engineering
( Feature Engineering ) ( Observatlon ]

( Several Algorlthms ( Encode |nto Feature

( Comblnlng Different Models ) ( Result
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First observation:
Authors Information

Are these my (Chun-Liang Li) papers?

1. Chun-Liang Li and Hsuan-Tien Lin. Condensed filter tree for cost-sensitive multi-label

classification.
2. Yao-Nan Chen and Hsuan-Tien Lin. Feature-aware label space dimension reduction for
multi-label classification.

* Encode by name similarities (e.g., how many characters are the same)
Are Li, Chun-Liang and Chun-Liang Li the same?

* Yes! Eastern and Western order

* How about Li Chun-Liang”? (Calculate the similarity of the reverse order)
Also take co-authors into account
29 features in total
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Second Observation:

Aftillations
 Are Dr. Chi-den Lu and Prof. Chih-den Lin the same”?

- Similar name: Chi-Jen Lu v.s. Chin-den L
* Shared co-author (mel)
* Take affiliations into account!
 Academia Sinica v.s. National Taiwan University

e 13 features in total
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| ast of KDD Cup 2013

* Many other features, including

e Can you live for more than 100 years? At least |
think | can't do research after 100 years ©

e More advanced: social network features

The 97 features designed by students won the competition
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Furthermore

* If | can access the content, can | do better? Definitely®©

Who is Robert Galbraith?

‘| thought it was by a very
mature writer, and not a
first-timer.” — Peter James

- THE GA lrff
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CALLINC N |

Author: Robert Galbraith
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Writing Style”

* "I was testing things like word length, gentence
length, paragraph length, frequency of particular
words and the pattern ofspunctuation”

— Peter Millican (University of Oxford)
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Game Changing Point:

Deep Learning
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Common Type of Data

* Image
B
st 4 Microsoft COCO
L Common Objects in Context
* Text
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Representation Learning

* Deep Learning as learning hidden representations
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Use last layer to extract features (Krizhevsky et al., 2012)

(Check Prof. Lee’s talk and go to deep learning session later )

* An active research topic in academia and industry

" Microsoft @?;
Research nvIDIA.
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Use Pre-trained Network

* Yon don't need to train a network by yourself

* Use existing pre-trained network to extract features

e AlexNet
e VGG
* Word2Vector

Simply using deep learning features achieves state-of-the-art
performance in many applications
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Successtul Example

 The PASCAL Visual Object Classes Challenge

Mean Average
Precision

2005 2007 2008 200982010 2012 2013 2014

HoG feature Slow progress on feature engineering and

Carnegie algorithms before deep learning
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Curse of Dimensionality:

Feature Selection and Dimension Reduction
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The more, the better?

Noisy Feature

If we have 1,000,000 data ||ls every feature useful?
with 100,000 dimensions, ||Redundancy?

how much memory do we
need?

Without any assumphon

ANS: 10° x 10° x 8 you need O( ) data to
= 8x 10! (B) i
_ 800 (CB) achieve e error for d

dimensional data
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Feature Selection
e Selectimportfeatures LI T TT T T I TT I

e Reduce dimensions

* Explainable Results

Commonly Used Tools

- LASSO (Sparse Constraint)
- Random Forests
- Many others
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KDD Cup Again

* In KDD Cup 2013, we actually generated more
than 200 features ©

* Use random forests to select only 97 tfeatures,

since many features are unimportant and even
harmful, but why?
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Non-useful Features

 Duplicated tfeatures

 Example I: Country (Taiwan) v.s. Coordinates (121, 23.5)

 Example II: Date of birth (1990) v.s. Age (26)
* Noisy features

e Noisy information

* Missing values

What if we still have too many features?
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Dimension Reduction

* Let’s visualize the data (a perfect example)

+ ©0-0--0--0---00--0--0:-0

* | @00 @ 00000

One dimension is enough

Trade-off between
information and space

Commonly Used Tools

Principal Component Analysis (PCA)

o‘o
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b | .
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PCA — Intuition

oply PCA on these faces

ixels) and visualize the
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PCA — Intuition (cont.)

 We can use very few base faces to approximate
(describe) the original faces

IBHI'HIHI

o l » - . v ' . -. - B . 5
) . : (IR S
.
- B .
. _ -
-
" :
‘ol "
.
o 5
\~ . -
’rr !
. . e\
- * “ -
. oV ¢ - e e ’
™ | | . g 4 .
- - /l
.
-
l‘ 4 - . |
:
. )
"\

(Sirovich and Kirby, Low-dimensional procedure for the characterization of human faces)
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PCA — Case Study

* CIFAR-10 image classification Raaa™ » & B3
with raw pixels as features and & i 5 il ks £
using approximated kernel SVM malid W™ ¥ &

Dimensions Accuracy Time

3072 (all) 63.1% ~2 Hrs
100 (PCA) 59.8% 250 s

Trade-off between information, space and time
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PCA In Practice

Practical concern:

Small Problem

- - 2
Time complexity:  O(Nd”) PCA takes <10 seconds for
CIFAR-10 dataset (d=3072) by
Space complexity: O(d2) using 12 cores (E5-2620)

Remark: Use fast approximation for large-scale problem (e.g.,
>100k dimensions)

1. PCA with random projection (implemented in scikit-learn)

2. Stochastic algorithms (easy to implement from scratch)
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Conclusion

* Observe the data and encode them into meaningful features

( Existing Data ) @ ( Machine (Algorithm) )
m ( Existing Data ) * (Features) *( (Simple) Algorithm )

Deep learning is a powertful tool to use

Reduce number of features if necessary
 Reduce non-useful features

 (Computational concern

Carnegie
Mellon
University 30




Thanks!

Any Question”?
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