
Implicit Kernel Learning

Chun-Liang Li Wei-Cheng Chang Youssef Mroueh Yiming Yang Barnabás Póczos
{chunlial, wchang2, yiming, bapoczos}@cs.cmu.edu mroueh@us.ibm.com

Carnegie Mellon University and IBM Research

Abstract

Kernels are powerful and versatile tools in
machine learning and statistics. Although the
notion of universal kernels and characteristic
kernels has been studied, kernel selection still
greatly influences the empirical performance.
While learning the kernel in a data driven way
has been investigated, in this paper we explore
learning the spectral distribution of kernel via
implicit generative models parametrized by
deep neural networks. We called our method
Implicit Kernel Learning (IKL). The proposed
framework is simple to train and inference is
performed via sampling random Fourier fea-
tures. We investigate two applications of the
proposed IKL as examples, including genera-
tive adversarial networks with MMD (MMD
GAN) and standard supervised learning. Em-
pirically, MMD GAN with IKL outperforms
vanilla predefined kernels on both image and
text generation benchmarks; using IKL with
Random Kitchen Sinks also leads to substan-
tial improvement over existing state-of-the-art
kernel learning algorithms on popular super-
vised learning benchmarks. Theory and con-
ditions for using IKL in both applications are
also studied as well as connections to previous
state-of-the-art methods.

1 Introduction

Kernel methods are among the essential foundations in
machine learning and have been extensively studied in
the past decades. In supervised learning, kernel meth-
ods allow us to learn non-linear hypothesis. They also
play a crucial role in statistics. Kernel maximum mean

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

discrepancy (MMD) (Gretton et al., 2012) is a powerful
two-sample test, which is based on a statistics computed
via kernel functions. Even though there is a surge of
deep learning in the past years, several successes have
been shown by kernel methods and deep feature extrac-
tion. Wilson et al. (2016) demonstrate state-of-the-art
performance by incorporating deep learning, kernel
and Gaussian process. Li et al. (2015); Dziugaite et al.
(2015) use MMD to train deep generative models for
complex datasets.

In practice, however, kernel selection is always an im-
portant step. Instead of choosing by a heuristic, several
works have studied kernel learning. Multiple kernel
learning (MKL) (Bach et al., 2004; Lanckriet et al.,
2004; Bach, 2009; Gönen and Alpaydın, 2011; Duve-
naud et al., 2013) is one of the pioneering frameworks
to combine predefined kernels. One recent kernel learn-
ing development is to learn kernels via learning spectral
distributions (Fourier transform of the kernel). Wilson
and Adams (2013) model spectral distributions via a
mixture of Gaussians, which can also be treated as an
extension of linear combination of kernels (Bach et al.,
2004). Oliva et al. (2016) extend it to Bayesian non-
parametric models. In addition to model spectral dis-
tribution with explicit density models aforementioned,
many works optimize the sampled random features
or its weights (e.g. Băzăvan et al. (2012); Yang et al.
(2015); Sinha and Duchi (2016); Chang et al. (2017);
Bullins et al. (2018)). The other orthogonal approach
to modeling spectral distributions is learning feature
maps for standard kernels (e.g. Gaussian). Feature
maps learned by deep learning lead to state-of-the-art
performance on different tasks (Hinton and Salakhut-
dinov, 2008; Wilson et al., 2016; Li et al., 2017).

In addition to learning effective features, implicit gen-
erative models via deep learning also lead to promis-
ing performance in learning distributions of complex
data (Goodfellow et al., 2014). Inspired by its recent
success, we propose to model kernel spectral distribu-
tions with implicit generative models in a data-driven
fashion, which we call Implicit Kernel Learning (IKL).
IKL provides a new route to modeling spectral distri-

Implicit Kernel Learning

butions by learning sampling processes of the spectral
densities, which is under explored by previous works
aforementioned.

In this paper, we start from studying the generic prob-
lem formulation of IKL, and propose an easily imple-
mented, trained and evaluated neural network parame-
terization which satisfies Bochner’s theorem (Section 2).
We then demonstrate two example applications of the
proposed IKL. Firstly, we explore MMD GAN (Li et al.,
2017) with IKL on learning to generate images and
text (Section 3). Secondly, we consider a standard two-
staged supervised learning task with Random Kitchen
Sinks (Sinha and Duchi, 2016) (Section 4). The con-
ditions required for training IKL and its theoretical
guarantees in both tasks are also studied. In both
tasks, we show that IKL leads to competitive or better
performance than heuristic kernel selections and exist-
ing approaches modeling kernel spectral densities. It
demonstrates the potentials of learning more powerful
kernels via deep generative models. Finally, we discuss
the connection with existing works in Section 5.

2 Kernel Learning

Kernels have been used in several applications with
success, including supervised learning, unsupervised
learning, and hypothesis testing. They have also
been combined with deep learning in different applica-
tions (Mairal et al., 2014; Li et al., 2015; Dziugaite et al.,
2015; Wilson et al., 2016; Mairal, 2016). Given data
x ∈ Rd, kernel methods compute the inner product of
the feature transformation φ(x) in a high-dimensional
Hilbert space H via a kernel function k : X × X → R,
which is defined as k(x, x′) = 〈φ(x), φ(x′)〉H , where
φ(x) is usually high or even infinitely dimensional. If
k is shift invariant (i.e. k(x, y) = k(x − y)), we can
represent k as an expectation with respect to a spectral
distribution Pk(ω).

Bochner’s theorem (Rudin, 2011) A continuous,
real valued, symmetric and shift-invariant function k
on Rd is a positive definite kernel if and only if there
is a positive finite measure Pk(ω) such that

k(x−x′) =

∫
Rd
eiω
>(x−x′)dPk(ω) = Eω∼Pk

[
eiω
>(x−x′)

]
.

2.1 Implicit Kernel Learning

We restrict ourselves to learning shift invariant kernels.
According to that, learning kernels is equivalent to

learning a spectral distribution by optimizing

arg max
k∈K

∑
i=1

Ex∼Pi,x′∼Qi [Fi(x, x
′)k(x, x′)] =

arg max
k∈K

∑
i=1

Ex∼Pi,x′∼Qi
[
Fi(x, x

′)Eω∼Pk
[
eiω
>(x−x′)

]]
,

(1)
where F is a task-specific objective function and K is
a set of kernels. (1) covers many popular objectives,
such as kernel alignment (Gönen and Alpaydın, 2011)
and MMD distance (Gretton et al., 2012). Existing
works (Wilson and Adams, 2013; Oliva et al., 2016)
learn the spectral density Pk(ω) with explicit forms
via parametric or non-parametric models. When we
learn kernels via (1), it may not be necessary to model
the density of Pk(ω), as long as we are able to esti-
mate kernel evaluations k(x− x′) = Eω[eiω

>(x−x′)] via
sampling from Pk(ω) (Rahimi and Recht, 2007). Al-
ternatively, implicit probabilistic (generative) models
define a stochastic procedure that can generate (sample)
data from Pk(ω) without modeling Pk(ω). Recently,
the neural implicit generative models (MacKay, 1995)
regained attentions with promising results (Goodfel-
low et al., 2014) and simple sampling procedures. We
first sample ν from a base distribution P(ν) which is
known (e.g. Gaussian distribution), then use a deter-
ministic function hψ parametrized by ψ, to transform
ν into ω = hψ(ν), where ω follows the complex target
distribution Pk(ω). Inspired by the success of deep
implicit generative models (Goodfellow et al., 2014),
we propose an Implicit Kernel Learning (IKL) method
by modeling Pk(ω) via an implicit generative model
hψ(ν), where ν ∼ P(ν), which results in

kψ(x, x′) = Eν
[
eihψ(ν)>(x−x′)

]
(2)

and reducing (1) to solve

arg max
ψ

∑
i=1

Ex∼Pi,x′∼Qi
[
Fi(x, x

′)Eν
(
eihψ(ν)>(x−x′)

)]
.

(3)
The gradient of (3) can be represented as∑

i=1

Ex∼Pi,x′∼QiEν
[
∇ψFi(x, x′)eihψ(ν)>(x−x′)

]
.

Thus, (3) can be optimized via sampling x, x′ from data
and ν from the base distribution to estimate gradient
as shown above (SGD) in every iteration. Next, we
discuss the parametrization of hψ to satisfy Bochner’s
Theorem, and describe how to evaluate IKL kernel in
practice.

Symmetric Pk(ω) To result in real valued kernels,
the spectral density has to be symmetric, where
Pk(ω) = Pk(−ω). Thus, we parametrize hψ(ν) =

Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos

sign(ν)◦h̃ψ(abs(ν)), where ◦ is the Hadamard product
and h̃ψ can be any unconstrained function if the base
distribution P(ν) is symmetric (i.e. P(ν) = P(−ν)),
such as standard normal distributions.

Kernel Evaluation Although there is usually no
closed form for the kernel evaluation kψ(x, x′) in (2)
with fairly complicated hψ, we can evaluate (approx-
imate) kψ(x, x′) via sampling finite number of ran-
dom Fourier features k̂ψ(x, x′) = φ̂hψ(x)>φ̂hψ(x′),
where φ̂hψ (x)> = [φ(x;hψ(ν1)), . . . , φ(x;hψ(νm))], and
φ(x;ω) is the evaluation on ω of the Fourier transfor-
mation φ(x) (Rahimi and Recht, 2007).

Next, we demonstrate two example applications cov-
ered by (3), where we can apply IKL, including kernel
alignment and maximum mean discrepancy (MMD).

3 MMD GAN with IKL

Given {xi}ni=1 ∼ PX , instead of estimating the density
PX , Generative Adversarial Network (GAN) (Goodfel-
low et al., 2014) is an implicit generative model, which
learns a generative network gθ (generator). The genera-
tor gθ transforms a base distribution PZ over Z into Pθ
to approximate PX , where Pθ is the distribution of gθ(z)
and z ∼ PZ . During the training, GAN alternatively
estimates a distance D(PX ‖Pθ) between PX and Pθ,
and updates gθ to minimize D(PX ‖Pθ). Different prob-
ability metrics have been studied (Goodfellow et al.,
2014; Li et al., 2015; Dziugaite et al., 2015; Nowozin
et al., 2016; Arjovsky et al., 2017; Mroueh et al., 2017;
Li et al., 2017; Mroueh and Sercu, 2017; Gulrajani
et al., 2017; Mroueh et al., 2018; Arbel et al., 2018) for
training GANs.

Kernel maximum mean discrepancy (MMD) is a prob-
ability metric, which is commonly used in two-sample-
test to distinguish two distributions with finite sam-
ples (Gretton et al., 2012). Given a kernel k, the MMD
between P and Q is defined as

Mk(P,Q) = EP,P[k(x, x′)]−2EP,Q[k(x, y)]+EQ,Q[k(y, y′)].
(4)

For characteristic kernels, Mk(P,Q) = 0 iff P = Q. Li
et al. (2015); Dziugaite et al. (2015) train the generator
gθ by optimizing minθMk(PX ,Pθ) with a Gaussian
kernel k. Li et al. (2017) propose MMD GAN, which
trains gθ via minθ maxk∈KMk(PX ,Pθ), where K is a
pre-defined set of kernels. The intuition is to learn
a kernel argmaxk∈KMk(PX ,Pθ), which has a stronger
signal (i.e. larger distance when PX 6= Pθ) to train gθ.
Specifically, Li et al. (2017) consider a composition
kernel kϕ which combines Gaussian kernel k and a
neural network fϕ as kϕ = k ◦ fϕ, where

kϕ(x, x′) = exp(−‖fϕ(x)− fϕ(x)′‖2). (5)

The MMD GAN objective then becomes
minθ maxϕMϕ(PX ,Pθ).

3.1 Training MMD GAN with IKL

Although the composition kernel with a learned fea-
ture embedding fϕ is powerful, choosing a good base
kernel k is still crucial in practice (Bińkowski et al.,
2018). Different base kernels for MMD GAN, such
as rational quadratic kernel (Bińkowski et al., 2018)
and distance kernel (Bellemare et al., 2017), have been
studied. Instead of choosing it by hands, we propose
to learn the base kernel by IKL, which extend (5) to
be kψ,ϕ = kψ ◦ fϕ with the form

kψ,ϕ(x, x′) = Eν
[
eihψ(ν)>(fϕ(x)−fϕ(x′))

]
. (6)

We then extend the MMD GAN objective to be

min
θ

max
ψ,ϕ

Mψ,ϕ(PX ,Pθ), (7)

where Mψ,ϕ is the MMD distance (4) with the IKL
kernel (6). Clearly, for a given ϕ, the maximization over
ψ in (7) can be represented as (1) by letting F1(x, x′) =
1, F2(x, y) = −2 and F3(y, y′) = 1. In what follows,
we will use for convenience kψ,ϕ, kψ and kϕ to denote
kernels defined in (6), (2) and (5) respectively.

3.2 Property of MMD GAN with IKL

As proven by Arjovsky and Bottou (2017), some prob-
ability distances adopted by existing works (e.g. Good-
fellow et al. (2014)) are not weak (i.e. Pn

D−→ P then
D(Pn‖P)→ 0), which cannot provide better signal to
train gθ. Also, they usually suffer from discontinuity,
hence it cannot be trained via gradient descent at cer-
tain points. We prove that maxψ,ϕMψ,ϕ(PX ,Pθ) is a
continuous and differentiable objective in θ and weak
under mild assumptions as used in (Arjovsky et al.,
2017; Li et al., 2017).

Assumption 1. gθ(z) is locally Lipschitz and differ-
entiable in θ; fϕ(x) is Lipschitz in x and ϕ ∈ Φ is
compact. fϕ ◦ gθ(z) is differentiable in θ and there
are local Lipschitz constants, which is independent
of ϕ, such that Ez∼Pz [L(θ, z)] < +∞. The above
assumptions are adopted by Arjovsky et al. (2017).
Lastly, assume given any ψ ∈ Ψ, where Ψ is compact,
kψ(x, x′) = Eν

[
eihψ(ν)>(x−x′)

]
and |kψ(x, x′)| <∞ is

differentiable and Lipschitz in (x, x′) which has an up-
per bound Lk for Lipschitz constant of (x, x′) given
different ψ.

Theorem 2. Assume function gθ and kernel kψ,ϕ
satisfy Assumption 1, maxψ,ϕMψ,ϕ is weak, that is,
maxψ,ϕMψ,ϕ(PX ,Pn) → 0 ⇐⇒ Pn

D−→ PX . Also,

Implicit Kernel Learning

maxψ,ϕMψ,ϕ(PX ,Pθ) is continuous everywhere and dif-
ferentiable almost everywhere in θ.

Lemma 3. Assume X is bounded. Let x, x′ ∈
X , kψ(x, x′) = Eν

[
eihψ(ν)>(x−x′)

]
is Lipschitz in

(x, x′) if Eν
[
‖hψ(ν)‖2

]
< ∞, which is variance since

Eν [hψ(ν)] = 0.

We penalize λh(Eν
[
‖hψ(ν)‖2

]
− u)2 as an approxima-

tion of Lemma 3 in practice to ensure that assumptions
in Theorem 2 are satisfied. The algorithm with IKL
and gradient penalty (Bińkowski et al., 2018) is shown
in Algorithm 1.

Algorithm 1: MMD GAN with IKL
Input: η the learning rate, B the batch size, nc
number of f, h updates per g update, m the number
of basis, λGP the coefficient of gradient penalty, λh
the coefficient of variance constraint.
Initial parameter θ for g, ϕ for f , ψ for h
Define L(ψ,ϕ) = Mψ,ϕ(PX ,Pθ)−
λGP (‖∇x̂fϕ(x̂)‖2 − 1)2 − λh(Eν [‖hψ(ν)‖2]− u)2

while θ has not converged do
for t = 1, . . . , nc do
Sample {xi}Bi=1 ∼ P(X), {zj}Bj=1 ∼
P(Z), {νk}mk=1 ∼ P(ν)
(ψ,ϕ)← ϕ+ ηAdam ((ψ,ϕ),∇ψ,ϕL(ψ,ϕ))

end for
Sample {xi}Bi=1 ∼ P(X), {zj}Bj=1 ∼
P(Z), {νk}mk=1 ∼ P(ν)
θ ← θ − ηAdam(θ,∇θMψ,ϕ(PX ,Pθ))

end while

3.3 Empirical Study

We consider image and text generation tasks for quan-
titative evaluation. For image generation, we evaluate
the inception score (Salimans et al., 2016) and FID
score (Heusel et al., 2017) on CIFAR-10 (Krizhevsky
and Hinton, 2009). We use DCGAN (Radford
et al., 2016) and expands the output of fϕ to be 16-
dimensional as Bińkowski et al. (2018). For text genera-
tion, we consider a length-32 character-level generation
task on Google Billion Words dataset. The evaluation
is based on Jensen-Shannon divergence on empirical
4-gram probabilities (JS-4) of the generated sequence
and the validation data as used by Gulrajani et al.
(2017); Heusel et al. (2017); Mroueh et al. (2018). The
model architecture follows Gulrajani et al. (2017) in
using ResNet with 1D convolutions. We train every
algorithm 10, 000 iterations for comparison.

For MMD GAN with fixed base kernels, we con-
sider the mixture of Gaussian kernels k(x, x′) =∑
q exp(−‖x−x

′‖2
2σ2
q

) (Li et al., 2017) and the mixture

of RQ kernels k(x, x′) =
∑
q(1 + ‖x−x′‖2

2αq
)−αq . We

tuned hyperparameters σq and αq for each kernel as
reported in Appendix F.1.

Lastly, for learning base kernels, we compare IKL with
SM kernel (Wilson and Adams, 2013) fϕ, which learns
mixture of Gaussians to model kernel spectral density.
It can also be treated as the explicit generative model
counter part of the proposed IKL.

In both tasks, P(ν), the base distribution of IKL, is
a standard normal distribution and hψ is a 3-layer
MLP with 32 hidden units for each layer. Similar to
the aforementioned mixture kernels, we consider the
mixture of IKL kernel with the variance constraints
E[‖hψ(ν)‖2] = 1/σq, where σq is the bandwidths for
the mixture of Gaussian kernels. Note that if hψ is
an identity map, we recover the mixture of Gaussian
kernels. We fix λh to be 10 and resample m = 1024
random features for IKL in every iteration. For other
settings, we follow Bińkowski et al. (2018) and the
hyperparameters can be found in Appendix F.1.

3.3.1 Results and Discussion

We compare MMD GAN with the proposed IKL and
different fixed kernels. We repeat the experiments 10
times and report the average result with standard error
in Table 1. Note that for inception score the larger
the better; while JS-4 the smaller the better. We also
report WGAN-GP results as a reference. Since FID
score results (Heusel et al., 2017) is consistent with
inception score and does not change our discussion, we
put it in Appendix C.1 due to space limit. Sampled
images on larger datasets are shown in Figure 1.

Method Inception Scores (↑) JS-4 (↓)
Gaussian 6.726± 0.021 0.381± 0.003

RQ 6.785± 0.031 0.463± 0.005
SM 6.746± 0.031 0.378± 0.003
IKL 6.876± 0.018 0.372± 0.002

WGAN-GP 6.539± 0.034 0.379± 0.002

Table 1: Inception scores and JS-4 divergece results.

Pre-defined Kernels Bińkowski et al. (2018) show
RQ kernels outperform Gaussian and energy distance
kernels on image generation. Our empirical results
agree with such finding: RQ kernels achieve 6.785 in-
ception score while for Gaussian kernel it is 6.726, as
shown in the left column of Table 1. In text genera-
tion, nonetheless, RQ kernels only achieve 0.463 JS-4
score1 and are not on par with 0.381 acquired by Gaus-

1For RQ kernels, we searched 10 possible hyperparam-
eter settings and reported the best one in Appendix, to
ensure the unsatisfactory performance is not caused by the
improper parameters.

Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos

Figure 1: Samples generated by MMDGAN-IKL on CIFAR-10, CELEBA and LSUN dataset.

sian kernels, even though it is still slightly worse than
WGAN-GP. These results imply kernel selection is task-
specific. On the other hand, the proposed IKL learns
kernels in a data-driven way, which results in the best
performance in both tasks. In CIFAR-10, although
Gaussian kernel is worse than RQ, IKL is still able to
transforms P(ν), which is Gaussian, into a powerful ker-
nel, and outperforms RQ on inception scores (6.876 v.s.
6.785). For text generation, from Table 1 and Figure 2,
we observe that IKL can further boost Gaussian into
better kernels with substantial improvement. Also, we
note that the difference between IKL and pre-defined
kernels in Table 1 is significant based on the t-test at
95% confidence level.

0 2000 4000 6000 8000 10000
g iterations

0.38
0.40
0.42
0.44
0.46
0.48
0.50

JS
-4

Gaussian
RQ
IKL

Figure 2: Convergence of MMD GANs with different
kernels on text generation.

Learned Kernels The SM kernel (Wilson and
Adams, 2013), which learns the spectral density via mix-
ture of Gaussians, does not significantly outperforms
Gaussian kernel as shown in Table 1, since Li et al.
(2017) already uses equal-weighted mixture of Gaussian
formulation. It suggests that proposed IKL can learn
more complicated and effective spectral distributions
than simple mixture models.

Study of Variance Constraints In Lemma 3, we
prove bounding variance E[‖hψ(ν)‖2] guarantees kψ
to be Lipschitz as required in Theorem 2. We inves-
tigate the importance of this constraint. In Figure 3,
we show the training objective (MMD), E[‖hψ(ν)‖2]

and the JS-4 divergence for training MMD GAN (IKL)
without variance constraint, i.e. λh = 0. We could ob-
serve the variance keeps going up without constraints,
which leads exploded MMD values. Also, when the
exploration is getting severe, the JS-4 divergence starts
increasing, which implies MMD cannot provide mean-
ingful signal to gθ. The study justifies the validity of
Theorem 2 and Lemma 3.

5

10

M
M

D2

0

200

[||
h(

)||
2]

5000 10000 15000 20000
g iterations

0.5
0.6

JS
-4

Figure 3: Learning MMD GAN (IKL) without the
variance constraint on Google Billion Words datasets
for text generation.

Other Studies One concern of the proposed IKL is
the computational overhead introduced by sampling
random features as well as using more parameters to
model hψ. Since we only use small network to model
hψ, the increased computation overhead is almost neg-
ligible under GPU parallel computation. The detailed
comparison can be found in Appendix C.2. We also
compare IKL with Bullins et al. (2018), which can be
seen as a variant of IKL without hψ, and studt the
variance constraint. Those additional discussions can
be found in Appendix C.1.

4 Random Kitchen Sinks with IKL

Rahimi and Recht (2009) propose Random Kitchen
Sinks (RKS) as follows. We sample ωi ∼ Pk(ω) and

Implicit Kernel Learning

transform x ∈ Rd into φ̂(x) = [φ(x;ω1), . . . , φ(x;ωM)],
where supx,ω |φ(x;ω)| < 1. We then learn a classifier
on the transformed features φ̂(x;ω). Kernel methods
with random features (Rahimi and Recht, 2007) is an
example of RKS, where Pk(ω) is the spectral distribu-
tion of the kernel and φ(x;ω) =

[
cos(ω>x), sin(ω>x)

]
.

We usually learn a model w by solving

arg min
w

λ

2
‖w‖2 +

1

n

n∑
i=1

`
(
w>φ̂(xi)

)
. (8)

If ` is a convex loss function, the objective (8) can be
solved efficiently to global optimum.

Spectral distributions Pk are usually set as a parame-
terized form, such as Gaussian distributions, but the
selection of Pk is important in practice. If we consider
RKS as kernel methods with random features, then
selecting P is equivalent to the well-known kernel selec-
tion (learning) problem for supervised learning (Gönen
and Alpaydın, 2011).

Two-Stage Approach We follows Sinha and Duchi
(2016) to consider kernel learning for RKS with a
two-stage approach. In stage 1, we consider ker-
nel alignment (Cristianini et al., 2002) of the form,
argmaxk∈K E(x,y),(x′,y′)

∑
i6=j yy

′k(x, x′). By parame-
terizing k via the implicit generative model hψ as in
Section 2, we have the following problem:

argmax
ψ

E(x,y),(x′,y′)yy
′Eν

[
eihψ(ν)>(x−x′),

]
. (9)

which can be treated as (1) with F1(x, x′) = yy′. After
solving (9), we learn a sampler hψ where we can easily
sample. Thus, in stage 2, we thus have the advantage
of solving a convex problem (8) in RKS with IKL. The
algorithm is shown in Algorithm 2.

Note that in stage 1, we resample {νj}mj=1 in every
iteration to train an implicit generative model hψ. The
advantage of Algorithm 2 is the random features used
in kernel learning and RKS can be different, which
allows us to use less random features in kernel learning
(stage 1), and sample more features for RKS (stage 2).

One can also jointly train both feature mapping ω
and the model parameters w, such as neural networks.
We remark that our intent is not to show state-of-
the-art results on supervised learning, on which deep
neural networks dominate (Krizhevsky et al., 2012;
He et al., 2016). We use RKS as a protocol to study
kernel learning and the proposed IKL, which still has
competitive performance with neural networks on some
tasks (Rahimi and Recht, 2009; Sinha and Duchi, 2016).
Also, the simple procedure of RKL with IKL allows
us to provide some theoretical guarantees of the per-
formance, which is sill challenging of deep learning
models.

Algorithm 2: Random Kitchen Sinks with IKL
Stage 1: Kernel Learning
Input: X = {(xi, yi)}ni=1, the batch size B for data
and m for random feature, learning rate η
Initial parameter ψ for h
while ψ has not converged or reach maximum iters
do
Sample {(xi, yi)}Bi=1 ⊆ X. Fresh sample
{νj}mj=1 ∼ P(ν)
gψ ←
∇ψ 1

B(B−1)

∑
i6=i′ yiyi′

1
m

∑m
j=1 e

ihψ(νj)
>(xi−xi′))

ψ ← ψ − ηAdam(ψ, gψ)
end while
Stage 2: Random Kitchen Sinks
Sample {νi}Mi=1 ∼ P(ν), note that M is not
necessarily equal to m
Transform X into φ(X) via hψ and {νi}Mi=1

Learn a linear classifier on (φ(X), Y)

Comparison with Existing Works Sinha and
Duchi (2016) learn non-uniform weights for M ran-
dom features via kernel alignment in stage 1 then using
these optimized features in RKS in the stage 2. Note
that the random features used in stage 1 has to be the
same as the ones in stage 2. A jointly training of fea-
ture mapping and classifier can be treated as a 2-layer
neural networks (Băzăvan et al., 2012; Alber et al.,
2017; Bullins et al., 2018). Learning kernels with afore-
mentioned works will be more costly if we want to use a
large number of random features for training classifiers.
In contrast to implicit generative models, Oliva et al.
(2016) learn an explicit Bayesian nonparametric gener-
ative model for spectral distributions, which requires
specifically designed inference algorithms. Learning
kernels for (8) in dual form without random features
has also been proposed. It usually require costly steps,
such as eigendecomposition of the Gram matrix (Gönen
and Alpaydın, 2011).

4.1 Empirical Study

We evaluate the proposed IKL on both synthetic and
benchmark binary classification tasks. For IKL, P(ν)
is standard Normal and hψ is a 3-layer MLP for all ex-
periments. The number of random features m to train
hψ in Algorithm 2 is fixed to be 64. Other experiment
details are described in Appendix F.2.

Kernel learning with a poor choice of Pk(ω) We
generate {xi}ni=1 ∼ N (0, Id) with yi = sign(‖x‖2−

√
d),

where d is the data dimension. A two dimensional
example is shown in Figure 4. Competitive baselines
include random features (RFF) (Rahimi and Recht,
2007) as well as OPT-KL (Sinha and Duchi, 2016).

Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos

Figure 4: Left figure is training examples when d =
2. Right figure is the classification error v.s. data
dimension.

In the experiments, we fix M = 256 in RKS for all
algorithms. Since Gaussian kernels with the bandwidth
σ = 1 is known to be ill-suited for this task (Sinha and
Duchi, 2016), we directly use random features from it
for RFF and OPT-KL. Similarly, we set P(ν) to be
standard normal distribution as well.

The test error for different data dimension d =
{2, 4, . . . , 18, 20} is shown in Figure 4. Note that RFF
is competitive with OPT-KL and IKL when d is small
(d ≤ 6), while its performance degrades rapidly as
d increases, which is consistent with the observation
in Sinha and Duchi (2016). More discussion of the
reason of failure can be referred to Sinha and Duchi
(2016). On the other hand, although using standard
normal as the spectral distribution is ill-suited for this
task, both OPT-KL and IKL can adapt with data and
learn to transform it into effective kernels and result
in slower degradation with d.

Note that OPT-KL learns the sparse weights on the
sampled random features (M = 256). However, the
sampled random features can fail to contain informative
ones, especially in high dimension (Bullins et al., 2018).
Thus, when using limited amount of random features,
OPT-IKL may result in worse performance than IKL
in the high dimensional regime in Figure 4.

Performance on benchmark datasets Next, we
evaluate our IKL framework on standard benchmark
binary classification tasks. Challenging label pairs are
chosen from MNIST (LeCun et al., 1998) and CIFAR-
10 (Krizhevsky and Hinton, 2009) datasets; each task
consists of 10000 training and 2000 test examples. For
all datasets, raw pixels are used as the feature repre-
sentation. We set the bandwidth of RBF kernel by the
median heuristic. We also compare with Wilson and
Adams (2013), the spectral mixture (SM) kernel, which
uses Gaussian mixture to learn spectral density and
can be seen as the explicit generative model counter-
part of IKL. Also, SM kernel is a MKL variant with
linear combination (Gönen and Alpaydın, 2011). In

addition, we consider the joint training of random fea-
tures and model parameters, which can be treated as
two-layer neural network (NN) and serve as the lower
bound of error for comparing different kernel learning
algorithms.

The test error versus different M = {26, 27, . . . , 213}
in the second stage are shown in Figure 5. First, in
light of computation efficiency, SM and the proposed
IKL only sample m = 64 random features in each
iteration in the first stage, and draws different number
of basis M from the learned hψ(ν) for the second stage.
OPT-KL, on the contrary, the random features used
in training and testing should be the same. Therefore,
OPT-IKL needs to deal with M random features in
the training. It brings computation concern when M
is large. In addition, IKL demonstrates improvement
over the representative kernel learning method OPT-
KL, especially significant on the challenging datasets
such as CIFAR-10. In some cases, IKL almost reaches
the performance of NN, such as MNIST, while OPT-KL
degrades to RFF except for small number of basis (M =
26). This illustrates the effectiveness of learning kernel
spectral distribution via the implicit generative model
hψ. Also, IKL outperforms SM, which is consistent
with the finding in Section 3 that IKL can learn more
complicated spectral distributions than simple mixture
models (SM).

4.2 Consistency and Generalization

The simple two-stages approach, IKL with RKS, al-
lows us to provide the consistency and generalization
guarantees. For consistency, it guarantees the solution
of finite sample approximations of (9) approach to the
optimum of (9) (population optimum), when we in-
crease number of training data and number of random
features. We firstly define necessary symbols and state
the theorem.

Let s(xi, xj) = yiyj be a label similarity function,
where |yi| ≤ 1. We use sij to denote s(xi, xj) in-
terchangeably. Given a kernel k, we define the true
and empirical alignment functions as,

T (k) = E [s(x, x′)k(x, x′)]

T̂ (k) = 1
n(n−1)

∑
i 6=j sijk(xi, xj).

In the following, we abuse the notation kψ to be kh for
ease of illustration. Recall the definitions of kh(x, x′) =

〈φh(x), φh(x′)〉 and k̂h(x, x′) = φ̂h(x)>φ̂h(x′). We de-
fine two hypothesis sets

FH = {f(x) = 〈w, φh(x)〉H |h ∈ H, 〈w,w〉 ≤ 1}
F̂mH = {f(x) = w>φ̂h(x)|h ∈ H, ‖w‖ ≤ 1, w ∈ Rm}.

Definition 4. (Rademacher’s Complexity) Given a
hypothesis set F , where f : X × X → R if f ∈ F ,

Implicit Kernel Learning

(a) MNIST (4-9) (b) MNIST (5-6) (c) CIFAR-10 (auto-truck) (d) CIFAR-10 (plane-bird)

Figure 5: Test error rate versus number of basis in second stage on benchmark binary classification tasks. We
report mean and standard deviation over five runs. Our method (IKL) is compared with RFF (Rahimi and Recht,
2009), OPT-KL (Sinha and Duchi, 2016), SM (Wilson and Adams, 2013) and the end-to-end training MLP (NN).

and a fixed sample X = {x1, . . . , xn}, the empirical
Rademacher’s complexity of F is defined as

Rn
X(F) =

1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(xi)

]
,

where σ are n i.i.d. Rademacher random variables.

We then have the following theorems showing that
the consistency guarantee depends on the complexity
of the function class induced by IKL as well as the
number of random features. The proof can be found
in Appendix D.

Theorem 5. (Consistency) Let ĥ =

arg maxh∈H T̂ (k̂h), with i.i.d, samples {νi}mi=1

drawn from P(ν). With probability at least 1− 3δ, we
have |T (k̂ĥ)− suph∈H T (kh)| ≤

2EX
[
Rn−1
X (FH) + Rn−1

X (F̂mH)
]

+

√
8 log 1

δ

n
+

√
2 log 4

δ

m
.

Applying Cortes et al. (2010), We also have a general-
ization bound, which depends number of training data
n, number of random features m and the Rademacher
complexity of IKL kernel, as shown in Appendix E. The
Rademacher complexity Rn

X(FH), for example, can be
1/
√
n or even 1/n for kernels with different bound-

ing conditions (Cortes et al., 2013). We would expect
worse rates for more powerful kernels. It suggests the
trade-off between consistency/generalization and using
powerful kernels parametrized by neural networks.

5 Discussion

We propose a generic kernel learning algorithm, IKL,
which learns sampling processes of kernel spectral dis-
tributions by transforming samples from a base dis-
tribution P(ν) into ones for the other kernel (spectral
density). We compare IKL with other algorithms for

learning MMD GAN and supervised learning with Ran-
dom Kitchen Sinks (RKS). For these two tasks, the
conditions and guarantees of IKL for are studied. Em-
pirical studies show IKL is better than or competitive
with the state-of-the-art kernel learning algorithms. It
proves IKL can learn to transform P(ν) into effective
kernels even if P(ν) is less less favorable to the task.

We note that the preliminary idea of IKL is mentioned
in Băzăvan et al. (2012), but they ended up with a algo-
rithm that directly optimizes sampled random features
(RF), which has many follow-up works (e.g. Sinha and
Duchi (2016); Bullins et al. (2018)). The major dif-
ference is, by learning the transformation function hψ,
the RF used in training and evaluation can be differ-
ent. This flexibility allows a simple training algorithm
(SGD) and does not require to keep learned features.
In our studies on GAN and RKS, we show using a
simple MLP can already achieve better or competitive
performance with those works, which suggest IKL can
be a new direction for kernel learning and worth more
studies.

We highlight that IKL is not conflict with existing
works but can be combined with them. In Section 3,
we show combining IKL with kernel learning via em-
bedding (Wilson et al., 2016) and mixture of spectral
distributions (Wilson and Adams, 2013). Therefore,
in addition to the examples shown in Section 3 and
Section 4, IKL is directly applicable to many existing
works with kernel learning via embedding (e.g. Dai et al.
(2014); Li and Póczos (2016); Wilson et al. (2016); Al-
Shedivat et al. (2016); Arbel et al. (2018); Jean et al.
(2018); Chang et al. (2019)). A possible extension is
combining with Bayesian inference (Oliva et al., 2016)
under the framework similar to Saatchi and Wilson
(2017). The learned sampler from IKL can possibly
provide an easier way to do Bayesian inference via
sampling.

Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos

References
Al-Shedivat, M., Wilson, A. G., Saatchi, Y., Hu, Z.,
and Xing, E. P. (2016). Learning scalable deep
kernels with recurrent structure. arXiv preprint
arXiv:1610.08936.

Alber, M., Kindermans, P.-J., Schütt, K., Müller, K.-
R., and Sha, F. (2017). An empirical study on the
properties of random bases for kernel methods. In
NIPS.

Arbel, M., Sutherland, D. J., Bińkowski, M., and Gret-
ton, A. (2018). On gradient regularizers for mmd
gans. In NIPS.

Arjovsky, M. and Bottou, L. (2017). Towards principled
methods for training generative adversarial networks.
In ICLR.

Arjovsky, M., Chintala, S., and Bottou, L. (2017).
Wasserstein GAN. In ICML.

Bach, F. R. (2009). Exploring large feature spaces with
hierarchical multiple kernel learning. In NIPS.

Bach, F. R., Lanckriet, G. R., and Jordan, M. I. (2004).
Multiple kernel learning, conic duality, and the smo
algorithm. In ICML.

Băzăvan, E. G., Li, F., and Sminchisescu, C. (2012).
Fourier kernel learning. In ECCV.

Bellemare, M. G., Danihelka, I., Dabney, W., Mo-
hamed, S., Lakshminarayanan, B., Hoyer, S., and
Munos, R. (2017). The cramer distance as a solu-
tion to biased wasserstein gradients. arXiv preprint
arXiv:1705.10743.

Bińkowski, M., Sutherland, D. J., Arbel, M., and Gret-
ton, A. (2018). Demystifying mmd gans. In ICLR.

Borisenko, O. and Minchenko, L. (1992). Directional
derivatives of the maximum function. Cybernetics
and Systems Analysis, 28(2):309–312.

Bullins, B., Zhang, C., and Zhang, Y. (2018). Not-so-
random features. In ICLR.

Chang, W.-C., Li, C.-L., Yang, Y., and Poczos, B.
(2017). Data-driven random fourier features using
stein effect. In IJCAI.

Chang, W.-C., Li, C.-L., Yang, Y., and Póczos,
B. (2019). Kernel change-point detection with
auxiliary deep generative models. arXiv preprint
arXiv:1901.06077.

Cortes, C., Kloft, M., and Mohri, M. (2013). Learning
kernels using local rademacher complexity. In NIPS.

Cortes, C., Mohri, M., and Rostamizadeh, A. (2010).
Generalization bounds for learning kernels. In ICML.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and
Kandola, J. S. (2002). On kernel-target alignment.
In ICML.

Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-
F. F., and Song, L. (2014). Scalable kernel methods
via doubly stochastic gradients. In NIPS.

Dudley, R. M. (2018). Real Analysis and Probability.
Chapman and Hall/CRC.

Duvenaud, D., Lloyd, J. R., Grosse, R., Tenenbaum,
J. B., and Ghahramani, Z. (2013). Structure discov-
ery in nonparametric regression through composi-
tional kernel search. In ICML.

Dziugaite, G. K., Roy, D. M., and Ghahramani, Z.
(2015). Training generative neural networks via max-
imum mean discrepancy optimization. In UAI.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R.,
and Lin, C.-J. (2008). Liblinear: A library for large
linear classification. JMLR.

Gönen, M. and Alpaydın, E. (2011). Multiple kernel
learning algorithms. JMLR.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu,
B., Warde-Farley, D., Ozair, S., Courville, A. C., and
Bengio, Y. (2014). Generative adversarial nets. In
NIPS.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf,
B., and Smola, A. (2012). A kernel two-sample test.
JMLR.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin,
V., and Courville, A. (2017). Improved training of
wasserstein gans. In NIPS.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In CVPR.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler,
B., and Hochreiter, S. (2017). Gans trained by a
two time-scale update rule converge to a local nash
equilibrium. In NIPS.

Hinton, G. E. and Salakhutdinov, R. R. (2008). Us-
ing deep belief nets to learn covariance kernels for
gaussian processes. In NIPS.

Jean, N., Xie, S. M., and Ermon, S. (2018). Semi-
supervised deep kernel learning: Regression with
unlabeled data by minimizing predictive variance. In
Advances in Neural Information Processing Systems,
pages 5327–5338.

Krizhevsky, A. and Hinton, G. (2009). Learning multi-
ple layers of features from tiny images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In NIPS.

Lanckriet, G. R., Cristianini, N., Bartlett, P., Ghaoui,
L. E., and Jordan, M. I. (2004). Learning the kernel
matrix with semidefinite programming. JMLR.

Implicit Kernel Learning

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
(1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE.

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and
Poczos, B. (2017). Mmd gan: Towards deeper un-
derstanding of moment matching network. In NIPS.

Li, C.-L. and Póczos, B. (2016). Utilize old coordinates:
Faster doubly stochastic gradients for kernel methods.
In UAI.

Li, Y., Swersky, K., and Zemel, R. (2015). Generative
moment matching networks. In ICML.

MacKay, D. J. (1995). Bayesian neural networks and
density networks. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment.

Mairal, J. (2016). End-to-end kernel learning with
supervised convolutional kernel networks. In NIPS.

Mairal, J., Koniusz, P., Harchaoui, Z., and Schmid, C.
(2014). Convolutional kernel networks. In NIPS.

Mroueh, Y., Li, C.-L., Sercu, T., Raj, A., and Cheng,
Y. (2018). Sobolev gan. In ICLR.

Mroueh, Y. and Sercu, T. (2017). Fisher gan. In NIPS.
Mroueh, Y., Sercu, T., and Goel, V. (2017). Mcgan:

Mean and covariance feature matching gan. In ICML.
Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-gan:
Training generative neural samplers using variational
divergence minimization. In NIPS.

Oliva, J. B., Dubey, A., Wilson, A. G., Póczos, B.,
Schneider, J., and Xing, E. P. (2016). Bayesian
nonparametric kernel-learning. In AISTATS.

Radford, A., Metz, L., and Chintala, S. (2016). Unsu-
pervised representation learning with deep convolu-
tional generative adversarial networks. In ICLR.

Rahimi, A. and Recht, B. (2007). Random features for
large-scale kernel machines. In NIPS.

Rahimi, A. and Recht, B. (2009). Weighted sums of
random kitchen sinks: Replacing minimization with
randomization in learning. In NIPS.

Rudin, W. (2011). Fourier analysis on groups. John
Wiley & Sons.

Saatchi, Y. and Wilson, A. G. (2017). Bayesian gan.
In NIPS, pages 3625–3634.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung,
V., Radford, A., and Chen, X. (2016). Improved
techniques for training gans. In NIPS.

Sinha, A. and Duchi, J. C. (2016). Learning kernels
with random features. In NIPS.

Wilson, A. and Adams, R. (2013). Gaussian process
kernels for pattern discovery and extrapolation. In
ICML.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing,
E. P. (2016). Deep kernel learning. In AISTATS.

Yang, Z., Wilson, A., Smola, A., and Song, L. (2015).
A la carte–learning fast kernels. In AISTATS.

Zhang, Y., Liang, P., and Charikar, M. (2017). A
hitting time analysis of stochastic gradient langevin
dynamics. In COLT.

Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos

A Proof of Theorem 2

We first show Pn
D−→ P then maxψ,ϕMψ,ϕ(P,Pn)→ 0. The results are based on Arbel et al. (2018), which leverages

Corollary 11.3.4 of Dudley (2018). Follows the sketch of Arbel et al. (2018), the only thing we remain to show is
proving ‖kψ(fϕ(x), ·)−kψ(fϕ(y), ·)‖HK is Lipschitz. By definition, we know that ‖kψ(fϕ(x), ·)−kψ(fϕ(y), ·)‖HK =
2(1− kψ(fϕ(x), fϕ(y))). Also, since kψ(0) = 1 and kψ(0)− kψ(x, x′) ≤ Lk‖0− (x− x′)‖ (Lipschtiz assumption of
kψ), we have

‖kψ(fϕ(x), ·)− kψ(fϕ(y), ·)‖HK ≤ 2Lk‖fϕ(x)− fϕ(y)‖ ≤ 2LkL‖x− y‖,

where the last inequality is since fϕ is also a Lipschitz function with Lipschitz constant L.

The other direction, maxψ,ϕMψ,ϕ(P,Pn) → 0 then Pn
D−→ P, is relatively simple. Without loss of generality,

we assume there exists ψ′ and φ′ such that hψ and fφ are identity functions (up to scaling), which recover the
Gaussian kernel k. Therefore, maxψ,ϕMψ,ϕ(P,Pn) → 0 implies Mψ′,ϕ′(P,Pn) → 0, which completes the proof
because MMD with any Gaussian kernel is weak (Gretton et al., 2012).

A.1 Continuity

Lemma 6. (Borisenko and Minchenko (1992)) Define τ(x) = max{f(x, u)|u ∈ U}. If f is locally Lipschitz
in x, U is compact and 5f(x, u∗(x)) exists, where u∗(x) = arg maxu f(x, u), then τ(x) is differentiable almost
everywhere.

We are going to show

max
ψ,ϕ

Mψ,ϕ(PX ,Pθ) = Ex,x′ [kψ,ϕ(x, x′)]− 2Ex,z[kψ,ϕ(x, gθ(z))] + Ez,z′ [kψ,ϕ(gθ(z
′), gθ(z))] (10)

is differentiable with respect to ϕ almost everywhere by using the auxiliary Lemma 6. We fist show
Ez,z′ [kψ,ϕ(gθ(z

′), gθ(z))] in (10) is locally Lipschitz in θ. By definition, kψ,ϕ(x, x′) = kψ(fϕ(x)−fϕ(x′)), therefore,

Ex,x′
[
kψ,ϕ

(
gθ(z), gθ(z

′)
)
− kψ,ϕ

(
gθ′(z), gθ′(z

′)
)]

=Ez,z′
[
kψ

(
fϕ
(
gθ(z)

)
− fϕ

(
gθ(z

′)
))]
− Ez,z′

[
kψ

(
fϕ
(
gθ′(z)

)
− fϕ

(
gθ′(z

′)
))]

≤Ez,z′
[
Lk

∥∥∥fϕ(gθ(z))− fϕ(gθ(z′))− fϕ(gθ′(z))+ fϕ
(
gθ′(z

′)
)∥∥∥]

≤Ez,z′
[
LkL(θ, z)‖θ − θ′‖+ LkL(θ, z′)‖θ − θ′‖

]
=2LkEz

[
L(θ, z)

]
‖θ − θ′‖.

The first inequality is followed by the assumption that k is locally Lipschitz in (x, x′), with a upper bound Lk for
Lipschitz constants. By Assumption 1, Ez

[
L(θ, z)

]
<∞, we prove Ez,z′

[
kψ
(
fϕ(gθ(z))− fϕ(gθ(z

′))
)]

is locally
Lipschitz. The similar argument is applicable to other terms in (10); therefore, (10) is locally Lipschitz in θ.

Last, with the compactness assumption on Φ and Ψ, and differentiable assumption on Mψ,ϕ(PX ,Pθ), applying
Lemma 6 proves Theorem 2.

B Proof of Lemma 3

Without loss of the generality, we can rewrite the kernel function as kψ(t) = Eν
[

cos
(
hψ(ν)>t

)]
, where t is

bounded. We then have
‖∇tkψ(t)‖ =

∥∥∥Eν[sin
(
hψ(ν)>t

)
hψ(ν)

]∥∥∥
≤ Eν

[∣∣ sin(hψ(ν)>t)
∣∣× ‖hψ(ν)‖

]
≤ Eν

[
‖t‖‖hψ(ν)‖2

]
The last inequality follows by | sin(x)| < |x|. Since t is bounded, if Eν [‖hψ(ν)‖2] <∞, there exist a constant L
such that ‖∇tkψ(t)‖ < L,∀t.

Implicit Kernel Learning

By mean value theorem, for any t and t′, there exists s = αt+ (1− α)t′, where α ∈ [0, 1], such that

kψ(t)− kψ(t′) = ∇skψ(s)>(t− t′).

Combining with ‖∇tkψ(t)‖ < L,∀t, we prove

kψ(t)− kψ(t′) ≤ L‖t− t′‖.

C Additional Studies of MMD GAN with IKL

C.1 Additional Quantitative Results

We show the full quantitative results on MMD GANs with different kernels with mean and standard error in
Table 2. In every tasks, IKL is the best among the predefined base kernels (Gaussian, RQ) and the competitive
kernel learning algorithm (SM). The difference in FID is less significant than inception score and JS-4, but we
note that FID score is a biased evaluation metric as discussed in Bińkowski et al. (2018).

Method Inception Scores (↑) FID Scores (↓) JS-4 (↓)
Gaussian 6.726± 0.021 32.50± 0.07 0.381± 0.003

RQ 6.785± 0.031 32.20± 0.09 0.463± 0.005
SM 6.746± 0.031 32.43± 0.08 0.378± 0.003
IKL 6.876± 0.018 31.98± 0.05 0.372± 0.002

WGAN-GP 6.539± 0.034 36.413± 0.05 0.379± 0.002

Table 2: Inception scores, FID scores, and JS-4 divergece results.

C.2 Computational Issues of GAN trainings with IKL

Model Capacity For fϕ, the number of parameters for DCGAN is around 0.8 million for size 32× 32 images
and 3 millions for size 64× 64 images. The ResNet architecture used in Gulrajani et al. (2017) has around 10
millions parameters. In contrast, in all experiments, we use simple three layer MLP as hψ for IKL, where the
input and output dimensions are 16, and hidden layer size is 32. The total parameters are just around 2,000.
Compared with fφ, the additional number of parameters used for hψ is almost negligible.

Computational Time The potential concern of
IKL is sampling random features for each examples.
In our experiments, we use m = 1024 random fea-
tures for each iteration. We measure the time per
iteration of updating critic iterations (f for WGAN-
GP and MMD GAN with Gaussian kernel; f and h
for IKL) with different batch sizes under Titan X.
The difference between WGAN-GP, MMD GAN and
IKL are not significant. The reason is computing
MMD and random feature is highly parallelizable,
and other computation, such as evaluating fφ and its
gradient penalty, dominates the cost because fφ has
much more parameters as aforementioned. Therefore,
we believe the proposed IKL is still cost effective in
practice.

C.3 Detailed Discussion of Variance Constraints

In Section 3, we propose to constrain variance via λh(Eν
[
‖hψ(ν)‖2

]
− u)2. There are other alternatives, such as

constraining L2 penalty or using Langrange. In practice, we do not observe significant difference.

Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos

Although we show the necessity of the variance constraint in language generation in Figure 3, we remark that the
proposed constraint is a sufficient condition. For CIFAR-10, without the constraint, we observe that the variance
is still bouncing between 1 and 2 without explosion as Figure 3. Therefore, the training leads to a satisfactory
result with 6.731± 0.034 inception score, but it is slightly worse than IKL in Table 1. The necessary or weaker
sufficient conditions are worth further studying as a future work.

C.4 IKL with and without Neural Networks on GAN training

Instead of learning a transform function hψ for the spectral distribution as we proposed in Section 2 (IKL-NN), the
other realization of IKL is to keep a pool of finite number learned random features Ω = {ω̂i}mi=1, and approximate
the kernel evaluation by k̂Ω(x, x′) = φ̂Ω(x)>φ̂Ω(x′), where φ̂Ω(x)> = [φ(x; ω̂1), . . . , φ(x; ω̂m)]. During the learning,
it directly optimize ω̂i. Many existing works study this idea for supervised learning, such as Băzăvan et al.
(2012); Yang et al. (2015); Sinha and Duchi (2016); Chang et al. (2017); Bullins et al. (2018). We call the latter
realization as IKL-RFF. Next, we discuss and compare the difference between IKL-NN and IKL-RFF.

The crucial difference between IKL-NN and IKL-RFF is, IKL-NN can sample arbitrary number of random features
by first sampling ν ∼ P(ν) and transforming it via hψ(ν), while IKL-RFF is restricted by the pool size m. If the
application needs more random features, IKL-RFF will be memory inefficient. Specifically, we compare IKL-NN
and IKL-RFF with different number of random features in Figure 6. With the same number of parameters (i.e.,
|hψ| = m× dim(ν))2 , IKL-NN outperforms IKL-RFF of m = 128 on Inception scores (6.876 versus 6.801). For
IKL-RFF to achieve the same or better Inception scores of IKL-NN, the number of random features m needs
increasing to 4096, which is less memory efficient than the IKL-NN realization. In particular, hψ of IKL-NN is a
three-layers MLP with 2048 number of parameters (16× 32 + 32× 32 + 32× 16), while IKL-RFF has 2048, 65536
number of parameters, for m = 128, 4096, respectively.

Figure 6: The comparison between IKL-NN and IKL-
RFF on CIFAR-10 under different number of random
features.

Algorithm JS-4

IKL-NN 0.372± 0.002
IKL-RFF 0.383± 0.002

IKL-RFF (+2) 0.380± 0.002
IKL-RFF (+4) 0.377± 0.002
IKL-RFF (+8) 0.375± 0.002

Table 3: The comparison between IKL-NN and
IKL-RFF on Google Billion Word.

On the other hand, using large m for IKL-RFF not only increases the number of parameters, but might also
enhance the optimization difficulty. Zhang et al. (2017) discuss the difficulty of optimizing RFF directly on
different tasks. Here we compare IKL-NN and IKL-RFF on challenging Google Billion Word dataset. We train
IKL-RFF with the same setting as Section 3.3 and Appendix F.1, where we set the pool size m to be 1024 and
the updating schedule between critic and generator to be 10 : 1, but we tune the Adam optimization parameter
for IKL-RFF for fair comparison. As discussed above, please note that the number of parameters for hψ is 2048
while IKL-RFF uses 16384 when m = 1024. The results are shown in Table 3. Even IKL-RFF is using more
parameters, the performance 0.383 is not competitive as IKL-NN, which achieves 0.372.

In Algorithm 1, we update fϕ and h in each iteration with nc times, where we use nc = 10 here. We keep
the number of updating fϕ to be 10, but increase the number of update for {ω̂i}1i=1024 to be 12, 14, 18 in each
iteration. The result is shown in Table 3 with symbols +2, +4 and +8 respectively. Clearly, we see IKL-RFF need

2|hψ| denotes number of parameters in hψ, m is number of random features and dim(ν) is the dimension of the ν.

Implicit Kernel Learning

more number of updates to achieve competitive performance with IKL-NN. The results might implies IKL-RFF
is a more difficult optimization problem with more parameters than IKL-NN. It also confirms the effectiveness
of learning implicit generative models with deep neural networks Goodfellow et al. (2014), but the underlying
theory is still an open research question. A better optimization algorithm Zhang et al. (2017) may improve the
performance gap between IKL-NN and IKL-RFF, which worth more study as future work.

D Proof of Theorem 5

We first prove two Lemmas.

Lemma 7. (Consistency with respect to data) With probability at least 1− δ, we have

sup
h∈H
|T̂ (kh)− T (kh)| ≤ 2EX

[
Rn−1
X (FH)

]
+

√
2

n
log

1

δ

Proof. Define
ρ(x1, . . . , xn) = sup

h∈H
|T̂ (kh)− T (kh)|,

since |kh(x, x′)| ≤ 1, it is clearly

sup
x1,...,xi,x′i,...,xn

|ρ(x1, . . . , xi, . . . xn)−

ρ(x1, . . . , x
′
i, . . . xn)| ≤ 2

n .

Applying McDiarmids Inequality, we get

P (ρ(x1, . . . , xn)− E[ρ(x1, . . . , xn)] ≥ ε) ≤ exp

(
−nε2

2

)
.

By Lemma 8, we can bound

E[ρ(x1, . . . , xn)] ≤ 2EX
[
Rn−1
X (FH)

]
and finish the proof.

Lemma 8. Given X = {x1, . . . , xn}, define

ρ(x1, . . . , xn) = sup
h∈H
|T̂ (kh)− T (kh)|,

we have

E
[
ρ(x1, . . . , xn)

]
≤ 2EX

[
Rn−1
X (FH)

]
,

Proof. The proof is closely followed by Dziugaite et al. (2015). Given h, we first define th(x, x′) = s(x, x′)kh(x, x′)
as a new kernel function to simplify the notations. We are then able to write

E
[
ρ(x1, . . . , xn)

]
= EX

[
sup
h∈H

∣∣∣∣∣∣E
[
th(z, z′)

]
− 1

n(n− 1)

∑
i 6=j

th(xi, xj)

∣∣∣∣∣∣
]

≤ EX,Z
[

sup
h∈H

∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

(th(zi, zj)− th(xi, xj))

∣∣∣∣∣∣
]

Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos

by using Jensen’s inequality. Utilizing the conditional expectation and introducing the Rademacher random
variables {σi}n−1

i=1 , we can write the above bound to be

1

n

∑
i

EX−i,Z−iExi,zi
[

sup
h∈H

∣∣∣∣
∑
i 6=j th(zi, zj)− th(xi, xj)

n− 1

∣∣∣∣]

= EX,ZEX′,Z′,σ
[

sup
h∈H

∣∣∣∣∣ 1

n− 1

n−1∑
i=1

σi(th(z′, zn)− th(x′, xn))

∣∣∣∣∣
]

(11)

The equality follows by X −X ′ and −(X −X ′) has the same distributions if X and X ′ are independent samples
from the same distribution. Last, we can bound it by

≤ EXEσ,X′
[

sup
h∈H

∣∣∣∣∣ 2

n− 1

n−1∑
i=1

σith(x′, xi)

∣∣∣∣∣
]

≤ EXEσ
[

sup
f∈FkH

∣∣∣∣∣ 2

n− 1

n−1∑
i=1

σif(xi)

∣∣∣∣∣
]

= 2EX [Rn−1
X (FH)]

The second inequality follows by s(x, x′)φ(x′) ∈ F since |s(x, x′)| ≤ 1.

Lemma 9. (Consistency with respect to sampling random features) With probability 1− δ, we have

| sup
h∈H

T̂ (kh)− sup
h∈H

T̂ (k̂h)| ≤

√
2 log 4

δ

m

Proof. Let the optimal solutions be
h∗ = arg maxh∈H T̂ (kh)

ĥ = arg maxh∈H T̂ (k̂h),

By definition,
T̂ (k̂h)

=
1

n(n− 1)

∑
i 6=j

sij

(
1

m

m∑
k=1

cos(h(νk)>(xi − xj))

)

=
1

m

m∑
k=1

(
1

n(n− 1)
sij cos(h(νk)>(xi − xj))

)
It is true that | 1

n(n−1)sij cos(h(νk)>(xi − xj)| ≤ 1 since |sij | < 1 and | cos(x)| < 1. we then have

P(| suph∈H T̂ (kh)− suph∈H T̂ (k̂h)| > ε)

≤ P(|T̂ (kh∗)− T̂ (k̂h∗)| > ε) + P(|T̂ (kĥ)− T̂ (k̂ĥ)| > ε)

≤ 4 exp

(
−mε

2

2

)
,

where the last inequality follows from the Hoeffding’s inequality.

With Lemma 7 and Lemma 9, we are ready to prove Theorem 5. We can decompose

|T (k̂ĥ)− sup
h∈H

T (kh)|

≤ | sup
h∈H

T (kh)− sup
h∈H

T̂ (kh)|+ | sup
h∈H

T̂ (kh)− T̂ (k̂ĥ)|+ |T̂ (k̂ĥ)− T (k̂ĥ)|

≤ sup
h∈H
|T (kh)− T̂ (kh)|+ | sup

h∈H
T̂ (kh)− T̂ (k̂ĥ)|+ sup

h∈H
|T̂ (k̂h)− T (k̂h)|

We then bound the first and third terms by Lemma 7 and the second term by Lemma 9. Last, using a union
bound completes the proof.

Implicit Kernel Learning

E Generalization of Random Kitchen Sinks with IKL

Theorem 10. (Generalization (Cortes et al., 2010)) Define the true and empirical misclassification for a classifier
f as R(f) = P(Y f(X) < 0) and R̂γ(h) = 1

n

∑n
i=1 min {1, [1− yf(xi)/γ]+}. Then

sup
f∈F̂H

{R(f)− R̂γ(f)} ≤ 2

γ
Rn
X(F̂H) + 3

√
log 2

δ

2n

with probability at least 1− δ.

F Hyperparameters

We report the hyperparameters used in the experiments.

F.1 GAN

For Gaussian kernels, we use σq = {1, 2, 4, 8, 16} for images and σq = {0.5, 1, 2, 4, 8} for text; for RQ kernels, we
use αq = {0.2, 0.5, 1, 2, 5} for images and αq = {0.04, 0.1, 0.2, 0.4, 1} for text. We used Adam as optimizer. The
learning rate for training both fφ and gθ is 0.0005 and 0.0001 for image and text experiments, respectively. The
batch size B is 64. We set hyperparameter nc for updating critic to be nc = 5 and nc = 10 for CIFAR10 and
Google Billion Word datasets. The learning rate of of hψ for Adam is 10−6.

F.2 Random Kitchen Sinks with IKL

For OPT-KL, we use the code provided by Sinha and Duchi (2016)3. We tune the hyperparameter ρ =
{1.25, 1.5, 2, 4, 16, 64} on the validation set. For RFF, OPT-KL, and IKL, the linear classifier is Logistic
Regression Fan et al. (2008)4, as to make reasonable comparison with MLP. We use 3-fold cross validation to
select the best C on training set and present the error rate on test set. For CIFAR-10 and MNIST, we normalize
data to be zero mean and one standard deviation in each feature dimension. The learning rate for Adam is 10−6.
We follow Bullins et al. (2018) to use early stopping when performance on validation set does not gain.

3https://github.com/amansinha/learning-kernels
4https://github.com/cjlin1/liblinear

https://github.com/amansinha/learning-kernels
https://github.com/cjlin1/liblinear

	Introduction
	Kernel Learning
	Implicit Kernel Learning

	MMD GAN with IKL
	Training MMD GAN with IKL
	Property of MMD GAN with IKL
	Empirical Study
	Results and Discussion

	Random Kitchen Sinks with IKL
	Empirical Study
	Consistency and Generalization

	Discussion
	Proof of Theorem 2
	Continuity

	Proof of Lemma 3
	Additional Studies of MMD GAN with IKL
	Additional Quantitative Results
	Computational Issues of GAN trainings with IKL
	Detailed Discussion of Variance Constraints
	IKL with and without Neural Networks on GAN training

	Proof of Theorem 5
	Generalization of Random Kitchen Sinks with IKL
	Hyperparameters
	GAN
	Random Kitchen Sinks with IKL

